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Abstract 
 
 

Noninvasive brain imaging during mobile activities could have far reaching 

scientific, clinical, and technological benefits. Electroencephalography (EEG) is the only 

mobile noninvasive sensing modality with sufficient temporal resolution to record brain 

activity on the time scale of natural motor behavior. In the past, EEG has been limited to 

stationary settings to prevent contamination by electromyographic and movement 

artifacts. I overcame this limitation by using Independent Component Analysis (ICA) to 

parse electrocortical processes from artifact contaminated EEG.  

Chapters 2 through 4 of this dissertation demonstrate the feasibility of measuring 

electrocortical activity during human locomotion. In Chapter 2, subjects performed a 

visual target discrimination and response task while standing, walking, and running. 

Cognitive event-related cortical potentials during walking and running were nearly 

identical to those during standing. Chapter 3 provided the first intra-stride 

measurements of brain activity during walking. Electrocortical sources in the anterior 

cingulate, posterior parietal, and sensorimotor cortex exhibited significant intra-stride 

changes in spectral power. A substantive scientific contribution of this study is the 

observation that synchronous neural firing in the anterior cingulate and posterior 

parietal cortex, not just the sensorimotor cortex, is modulated within the stride cycle 

during repetitive, steady-state locomotion. A 264-channel electrode array was used in 
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Chapters 2 and 3. By systematically reducing the number of channels used, Chapter 4 

demonstrated that 35 channels were sufficient to record the most dominate 

electrocortical sources. 

In Chapters 5 and 6, I studied healthy subjects performing isometric and isotonic 

lower-limb muscle contractions while seated to better understand the relationship 

between electrocortical dynamics and lower limb muscle activity. Isometric contractions 

elicited motor cortex event related desynchronization at joint torque onset and offset, 

while isotonic contractions elicited sustained cortical desynchronization throughout the 

movement. There was significant coherence between contralateral motor cortex signals 

and lower-limb electromyographic signals. The frequency of this coherence shifted from 

the beta-range for isometric contractions to the gamma-range for isotonic contractions.  

This dissertation demonstrated that EEG-based brain imaging in dynamic 

environments is possible and expanded our understanding of cortical involvement in 

voluntary lower limb movement. It also provided direction for future developments of 

clinical neuro-monitoring, neuro-assessment, and neuro-rehabilitation technologies. 
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Chapter 1: Introduction 

 
 

To a large extent the field of neuroscience is driven by studies using animal models 

and studies using human subjects in stationary (seated or prone) positions. There are 

noninvasive approaches for assessing human brain function in dynamic environments. 

These technologies either provide an indirect assessment of brain function (e.g., 

transcranial magnetic stimulation (TMS)) or they measure slow cortical hemodynamics 

that cannot assess brain dynamics on the time scale of natural motor behavior (e.g., 

near-infrared spectroscopy (NIRS)). Therefore, the primary goals of this dissertation 

were to assess the feasibility of mobile noninvasive electrical neuroimaging of the 

human brain and begin to explore cortical involvement in dynamic motor behaviors 

using this imaging approach.  

Noninvasive electrical neuroimaging could be a powerful tool with far reaching 

scientific, clinical, and technological benefits (Makeig et al., 2009). Neuroscientists 

exploring the theory that cognitive processes are deeply rooted in the body's 

interactions with the world (i.e., embodied cognition) could study brain dynamics during 

whole body interactions within natural environments (Borghi and Cimatti, 2010; Chiel 

and Beer, 1997; Wilson, 2002) and studies of human motor control would no longer be 

limited to studies of constrained movements. In addition, recording electrocortical 

dynamics during locomotion would provide a better understanding of how human 
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cortex is involved in controlling locomotion. It is generally accepted that humans use a 

multifaceted locomotion control strategy, including descending, peripheral, and central 

inputs (Dietz, 2003; Dietz and Duysens, 2000; Drew et al., 2004; Nielsen, 2003; Yang and 

Gorassini, 2006). However, no existing neuroimaging techniques allow for direct 

assessment of cortical involvement in locomotion with sufficient time resolution to 

study intra-stride brain dynamics.   

There are also several possible clinical and technological applications of mobile non-

invasive neuroimaging. The ability to quantify brain activation during gait could help 

clinicians diagnose subsets of patients with similar symptoms (Alexander et al., 2009; 

Boyd et al., 2007), choose a rehabilitation strategy with the best chance of success, and 

track brain plasticity during an intervention to gauge the success of a therapy or drug 

(Boyd et al., 2007; Mielke and Szelies, 2003; Weiller, 1998; Yang and Gorassini, 2006). In 

addition, mobile non-invasive neuroimaging could form the foundation for brain 

computer interfaces (BCIs) that operate in dynamic environments. These devices could 

be used to monitor the cognitive status of a civilian or military operator in a high-risk, 

fatigue prone situation, and they could be used for brain based control of 

electromechanical motor augmentation devices. Using features of brain activity to 

control devices that compensate for impaired neuromuscular control during gait 

rehabilitation may increase the relearning rate by encouraging active neurological 

participation from patients and producing more normal sensory afferents that induce 

central nervous system plasticity (Daly and Wolpaw, 2008). In addition, neural control of 

a prosthetic limb or powered orthosis could restore functional mobility to amputees and 
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patients with paralysis (Hatsopoulos and Donoghue, 2009; Kim et al., 2009; Leuthardt et 

al., 2009; Millan et al., 2008; Scherberger, 2009).  

 There are several techniques that have been used to assess cortical neural activity 

in mobile environments, such as during walking. Each of these techniques has 

limitations. Studies using NIRS have shown increases in oxygenated hemoglobin broadly 

distributed in the frontal, premotor, and supplementary motor cortex during walking 

(Harada et al., 2009; Miyai et al., 2001; Suzuki et al., 2008; Suzuki et al., 2004) but the 

cortical hemodynamic response is too slow to reflect intra-stride changes in neuronal 

activity. Studies using TMS have demonstrated that corticospinal excitability is 

modulated during the human gait cycle (Capaday et al., 1999; Petersen et al., 2001; 

Schubert et al., 1997) but TMS is an external perturbation to ongoing brain dynamics so 

its use in the context of BCI is limited. Control signals for noninvasive BCI have been 

derived from functional magnetic resonance imaging (Weiskopf et al., 2004) and 

magneto-encephalography (Georgopoulos et al., 2005) but these imaging techniques 

are not mobile and require subjects to remain in a seated or prone posture with limited 

body movement. 

Invasive electrophysiological recordings (i.e., sub-dermal, subdural, and intra-

cortical electrodes) provide high temporal and spatial resolution measures of 

electrocortical activity. Fitzsimmons et al. (2009) demonstrated that a series of decoders 

could accurately predict lower-limb muscle activations and kinematics from neuronal 

firing rates recorded using intra-cortical electrode arrays in rhesus monkeys that were 

trained to walk bipedally. Intra-cortical electrode arrays require surgically implanted 
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sensors, which have inherent infection and complication risks; they are typically only 

implanted to record signals from targeted regions of the cortex; and they have a lifespan 

on the order of a few months before cortical scar tissue develops and signal quality 

degrades (Leach et al., 2010; Schwartz, 2004). In humans, electrocorticography 

(recordings from subdural electrodes on the surface of the cortex) has been used to 

show that spectral properties of electrocortical processes correlate with upper-limb 

kinematics (Hatsopoulos and Donoghue, 2009; Kim et al., 2009; Leuthardt et al., 2009; 

Millan et al., 2008; Scherberger, 2009). Subdural electrodes are less invasive and have 

greater long-term stability (Chao et al., 2010) than intra-cortical electrodes, but still 

require surgical implantation with inherent costs and risk of complications.  

Electroencephalography (EEG) is the only noninvasive brain imaging modality that 

uses sensors that are light enough to wear during locomotion and have sufficient 

temporal resolution to record brain activity on the time scale of natural motor behavior. 

In the past, the use of EEG has been limited to stationary settings to prevent 

contamination by electromyographic and movement artifacts. I have overcome this 

limitation by using Independent Component Analysis (ICA) to parse underlying 

electrocortical processes from artifact contaminated EEG. ICA is a blind source 

separation technique that parses independent signals from correlated time-series data.  

The use of ICA for analysis of EEG is based on the premise that each electrode on the 

scalp records a linear sum of various underlying electrocortical and artifactual (i.e., non-

electrocortical) signals (Makeig et al., 1996). Linearly decomposing the electrode signals 

into a set of maximally temporally independent source signals reveals these underlying 
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processes, which can then be classified as artifactual or electrocortical (Jung et al., 

2000a; Jung et al., 2000b). Furthermore, electrocortical source signals are dipolar 

(Delorme et al., 2012) and can be localized within cortical grey matter using an inverse 

modeling approach based on a boundary element head model (Oostenveld and 

Oostendorp, 2002).  

The following five chapters each contain a complete manuscript that is independent 

of the other chapters. In each chapter the methods are similar. Noninvasive electrical 

neuroimaging is achieved by using high-density EEG and ICA. Each chapter asks a 

different question with a different purpose. The first three chapters evaluate the 

feasibility of using high-density EEG and ICA to record cortical neural activity during 

human locomotion by studying healthy subjects standing, walking and running on a 

treadmill while concurrently performing a cognitive task. In Chapter 2, comparisons of 

cognitive event-related electrocortical dynamics between stationary and ambulatory 

conditions assess the quality of electrocortical recordings during locomotion. In Chapter 

3, patterns of electrocortical activity that are synchronized to the gait cycle during 

walking are characterized; providing the first intra-stride measurements of human brain 

activity recorded during walking. Chapter 4 evaluates how reducing the number of EEG 

channel signals affects the electrocortical source signals that can be parsed from EEG 

recorded during standing and walking. In Chapters 5 and 6, I study healthy subjects 

performing a variety of lower-limb muscle contractions while seated. Chapter 5 

demonstrates differences in the electrocortical activity as a function of the type of 

muscle action and assesses the trial-by-trial consistency of these electrocortical 
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dynamics by decoding muscle action from the recorded EEG. Chapter 6 examines the 

causal relationship between electrocortical processes and lower limb electromyographic 

signals.   
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Chapter 2: Removal of Movement Artifact from High-Density EEG Recorded During 

Walking and Running 

 
This chapter has been previously published: 

Gwin JT, Gramann K, Makeig S, Ferris DP. Journal of Neurophysiology. 103: 3526-3534, 2010. 

 

 

Abstract 

Though human cognition often occurs during dynamic motor actions, most studies 

of human brain dynamics examine subjects in static seated or prone conditions. EEG 

signals have historically been considered to be too noise prone to allow recording of 

brain dynamics during human locomotion. Here we applied a channel-based artifact 

template regression procedure and a subsequent spatial filtering approach to remove 

gait-related movement artifact from EEG signals recorded during walking and running. 

We first used stride time warping to remove gait artifact from high density EEG for 8 

subjects recorded during a visual oddball discrimination task performed while walking 

and running. Next, we applied infomax independent component analysis (ICA) to parse 

the channel-based noise reduced EEG signals into maximally independent components 

(ICs) and then performed component-based template regression. Applying channel-

based or channel-based plus component-based artifact rejection significantly reduced 

EEG spectral power in the 1.5 – 8.5 Hz frequency range during walking and running. In 

walking conditions, gait-related artifact was insubstantial: event-related potentials 

(ERPs), which were nearly identical to visual oddball discrimination events while 



 8 

standing, were visible before and after applying noise reduction. In the running 

condition, gait-related artifact severely compromised the EEG signals: stable average 

ERP time-courses of IC processes were only detectable after artifact removal. These 

findings demonstrate that high-density EEG can be used to study brain dynamics during 

whole-body movements and that mechanical artifact from rhythmic gait events may be 

minimized using a template regression procedure.  

 

Introduction 

A non-invasive method for recording human electrocortical brain dynamics during 

mobile activities could have far reaching benefits (Makeig et al., 2009). Cognitive 

neuroscientists exploring embodied cognition could study brain dynamics associated 

with cognitive processes during whole-body interactions within natural environments. 

Studies of human motor control would no longer be limited to studies of constrained 

movements. Bioengineers might be able to employ such a method to derive control 

signals for neurorehabilitation and prosthetic technologies.  An unanswered question in 

neuroscience is to what extent human cortex participates in the generation of rhythmic 

motor behaviors, in particular those motor behaviors associated with locomotion. The 

answer seems to lie in a multifaceted control strategy including descending, peripheral, 

and central control (Yang and Gorassini, 2006). An ability to measure brain dynamics 

during locomotion may provide additional information regarding the significance of 

descending control.  
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Electroencephalography (EEG) is the only non-invasive brain imaging modality that 

uses sensors that are light enough to wear during locomotion and have sufficient time 

resolution to record brain activity on the time scale of natural motor behavior. However, 

EEG has historically been considered to be too noise prone to allow such recordings. 

Mechanical artifact in EEG signals, associated with head movements during locomotion, 

can have amplitude that is an order of magnitude larger than the underlying brain 

related EEG signals.  

A similar phenomenon occurs during simultaneous EEG and functional magnetic 

resonance imaging (fMRI). In this situation, alternating magnetic fields (gradients) of the 

MR scanner cause large repetitive artifact in EEG signals. Artifact template subtraction 

procedures have been used successfully to remove fMRI gradient artifact from EEG 

signals (Allen et al., 2000). Unlike fMRI gradient artifact which is relatively invariant over 

time (Garreffa et al., 2004), mechanical artifact associated with locomotion is time 

varying. Kinematics and kinetics of human walking exhibit both short-term (step to step) 

and long-term (over many steps) variability (Hausdorff et al., 1995; Hausdorff et al., 

1996; Jordan et al., 2006, 2007). Time varying sources of EEG noise, such as the 

ballistocardiogram artifact in EEG recorded in a strong magnetic field, have been 

extracted from EEG signals using channel-based template subtraction procedures and 

subsequent spatial filtering (Debener et al., 2007; Debener et al., 2005). This combined 

method was shown to be more effective than channel-based template subtraction 

(Niazy et al., 2005) or spatial filtering (Benar et al., 2003; Eichele et al., 2005) alone.  
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Here, we implemented a two-step approach to removing locomotion induced 

mechanical artifact in high-density EEG signals recorded while subjects walked and ran 

on a treadmill while simultaneously performing a visual oddball discrimination task. We 

first removed stride phase-locked mechanical artifact using a channel-based template 

regression procedure. To address slow fluctuations (over many strides) in the time 

profile of the gait-related artifact, we used moving time-window averaging of the stride 

phase-locked data to compute an artifact template for each stride and each channel. To 

address step-to-step fluctuations in the phase and amplitude of the gait-related artifact 

resulting from variability in gait kinematics and kinetics, we regressed out the artifact 

template signals from each EEG signal. Next, we applied an adaptive independent 

component analysis (ICA) mixture model algorithm [AMICA] (Palmer et al., 2006; Palmer 

et al., 2008), generalizing infomax (Bell and Sejnowski, 1995; Lee et al., 1999a) and 

multiple mixture (Lee et al., 1999b; Lewicki and Sejnowski, 2000) ICA approaches, to 

parse EEG signals into spatially static, maximally independent component (IC) processes 

(Makeig et al., 1996).  

Unlike more spatially stationary artifacts in EEG signals arising from eye 

movements, scalp muscles, fMRI gradients, etc (Debener et al., 2007; Debener et al., 

2005; Jung et al., 2000a; Jung et al., 2000b), which may be resolved by ICA 

decomposition into a subspace of one or more ICs, we found that gait-related 

movement artifact remained in many if not most of the independent components. This 

prevented us from removing only a small subset of components capturing the 

movement artifacts. Instead, we applied the template regression procedure (previously 
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applied to the channel data) to the IC processes, reversed the time-warping to produce 

artifact-reduced ICs, and applied the ICA mixing matrix to recover a second set of 

artifact-reduced EEG signals.    

To evaluate the combined effects of channel-based and channel-based plus 

component-based artifact removal, we computed the power spectral density of the 

resulting signals and compared spectral power in the 1.5 to 8.5 Hz frequency band 

before and after artifact removal, finding no sign of overcorrection of the EEG signals. 

We also compared the artifact-reduced stimulus event-related potentials (ERPs) in 

walking and running conditions to uncorrected ERPs recorded while standing. We found 

that in walking conditions, ERPs that were nearly identical to visual oddball 

discrimination events while standing, were visible before and after applying noise 

reduction, while in the running condition, stable average ERP time-courses of IC 

processes were only detectable after artifact removal. 

 

Methods 

Subjects 

Eight healthy volunteers with no history of major lower limb injury and no known 

neurological or locomotor deficits completed this study (7 males and 1 female, age 

range 21-31 years). All subjects provided written informed consent prior to the 

experiment. All procedures were approved by the University of Michigan Internal 

Review Board and complied with the standards defined in the Declaration of Helsinki.  
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Task 

Subjects stood, walked (0.8 m/s and 1.25 m/s), and ran (1.9 m/s) on a force 

measuring treadmill facing a monitor placed at eye level about 1 m in front of them.  

Standard (80%) and oddball (20%) stimuli (vertical or 45° rotated black crosses on a 

white background, respectively) were displayed for 500 ms. The stimuli occupied about 

75% of the display area (14° of visual angle). The inter-stimulus interval between 

successive presentations varied randomly between 500 ms and 1500 ms. For each gait 

condition (standing, slower walking, faster walking, running) subjects performed two 

experimental blocks. In the first block, subjects were asked to press a button on a 

wireless Wii controller (Nintendo, Kyoto, Japan) held in their right hand whenever the 

target (‘oddball’) stimulus appeared. In the second block, subjects were asked to silently 

count the number of target stimuli presented, without producing a manual response. 

Each session began with the standing condition, followed by the other three conditions 

in random order. The standing blocks lasted 5 minutes each while walking and running 

blocks lasted 10 minutes each. 

Recording Brain and Body Dynamics 

EEG was recorded using a compact ActiveTwo amplifier and 248-channel active 

electrode array (BioSemi, Amsterdam, The Netherlands). Electrodes were affixed to the 

scalp using a custom made whole-head cap (Figure 2-1). During the experimental setup, 

electrode impedance was measured, and electrode gel was used to ensure that the 

impedance was less than 20 KΩ for each channel. EEG signals were sampled at 512 Hz 

and after collection were high-pass filtered above 1 Hz. All processing and analysis was 
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performed in Matlab (The Mathworks, Natick, MA) using scripts based on EEGLAB 7.1.4 

(sccn.ucsd.edu/eeglab), an open source environment for processing electrophysiological 

data (Delorme and Makeig, 2004).  

 
Figure 2-1: (Left) a subject wearing a 248-channel electrode cap and (right) experimental setup sketch 

showing (A) motion capture cameras and (B) markers, (C) lower limb electromyography (EMG) (not 

used in this study), (D) the EMG amplifier, (E) the dual-belt in-ground force measuring treadmill, (F) the 

electrode head-cap, (G) the EEG amplifier, and (H) the display for the visual stimuli. 

 

For 2 of 8 subjects, EEG signals could not be recorded during the running condition 

because the electrode cap did not stay in place during running (i.e., it was too big for the 

subject). For the remaining 6 subjects, channels exhibiting substantial noise throughout 

the collection were removed from the data in the following manner: First, channels with 

std. dev. > 1000 µV were removed; then any channel whose kurtosis was more than 5 

std. dev. from the mean was removed; finally, channels that were uncorrelated (r < 0.4) 

with nearby channels for more than 1% of the time-samples were removed. On average 

130 EEG channel signals were retained after visual inspection and removal of noisy 



 14 

channels (range, 89-164; std. dev., 24.6). The data were then re-referenced offline to 

the average of the remaining channels. Visual stimulus events were delivered and their 

latencies incorporated into the EEG data stream using DataSuite (A. Vankov, 

sccn.ucsd.edu/wiki/DataSuite).  

Subjects walked and ran on a custom built, dual-belt, force measuring treadmill 

with two 24” wide belts mounted flush with the floor (Collins et al., 2009). The distance 

between the belts was 0.75”. The average belt speed variation while adult subjects walk 

on this treadmill at 1.25 m/s is 1.8%. The lowest natural frequency of the force treadmill 

is 41 Hz (for mediolateral forces). Each belt has a separate force platform mounted as its 

base for measuring ground reaction forces from each leg independently with a sample 

rate of 1200 Hz.  

We used an eight-camera, 120 frames/sec, motion capture system (Motion Analysis 

Corporation, Santa Rosa, CA) to record the position of 25 reflective markers (low pass 

filtered at 6 Hz to remove movement artifact) on the lower limbs and pelvis. From these 

marker positions the kinematics of the ankle, knee, and hip joints were computed using 

Visual-3D software (C-Motion, Germantown, MD). Event detection algorithms within 

Visual-3D were used to determine when heel strikes occurred based on vertical ground 

reaction forces. If force platform signals were compromised because the subject drifted 

across the centerline of the dual belt treadmill, a kinematic-based pattern recognition 

technique within Visual-3D was used to identify heel strikes (Stanhope et al., 1990).  
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Removal of Gait-Related Movement Artifact 

EEG signals were epoched, time-locked to single gait cycles (left heel strike to left 

heel strike), and linearly time-warped using EEGLAB processes (Makeig et al., 2007) so 

that after time-warping heel strike events (left then right) occurred at the same adjusted 

latencies in each epoch. For each channel and each stride, a gait-related artifact 

template was created by averaging the neighboring 20 time-warped stride-locked 

epochs (10 future epochs and 10 past epochs). This artifact template was then linearly 

scaled to best fit the time-warped EEG signal in a least-squares sense and was 

subtracted from the data to form artifact-reduced time-warped data. These cleaned 

data were then reverse time-warped to produce artifact-reduced continuous time EEG 

channel signals. We refer to this process as channel-based artifact removal (Figure 2-2).   

In addition, we performed ICA decomposition on the concatenated single-trial data 

(including all experimental conditions) for each subject separately using AMICA. Prior to 

performing ICA decomposition, time-periods of EEG with substantial artifact, based on 

the z-transformed power across all channels at a given time-point being larger than 0.8, 

were rejected using EEGLAB. The rejected frames were then inspected visually and 

regions of fewer than 50 accepted frames between any two sets of rejected frames 

were also rejected. The resulting ICA unmixing matrix was multiplied with the cleaned 

EEG channel signals, giving a set of maximally independent component (IC) process time 

courses. These ICs were then subjected to the same noise reduction algorithm that was 

first applied to the channel data. Multiplying the further artifact-reduced ICs by the ICA 

mixing matrix (the inverse of the unmixing matrix) resulted in a second set of further 
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cleaned EEG channel signals. We refer to this process as IC-based artifact removal 

(Figure 2-2).  

 
Figure 2-2: Flow chart of the channel-based and component-based artifact removal procedures.  

For component-based artifact removal, the independent components were derived from channel-based 

artifact removed EEG signals.  

 

Power Spectral Density 

For each gait condition (standing, slower walking, faster walking, running) and each 

method of artifact removal (before artifact removal, after channel-based removal, after 

further IC-based removal), we computed the power spectral density for each EEG 

channel using Welch’s method. For illustrative purposes, we computed the power 

spectral envelope for each subject, defined as the maximum and minimum spectral 
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density at each frequency over all EEG channels. We analyzed spectral power in the 1.5 

Hz to 8.5 Hz range to assess the efficacy of the gait-related artifact removal methods. 

This frequency band was selected because: 1) in all gait conditions for all subjects it 

encompassed the step frequency and the first two harmonics of the step frequency, 2) 

its lower cutoff (1.5 Hz) was greater than the high-pass filter cutoff frequency (1 Hz) that 

was applied to all EEG signals prior to analysis, and 3) frequencies above 8.5 Hz 

accounted for less than 6% of the total spectral power in the artifact templates for all 

gait conditions (slow walking, 6.2%; faster walking, 5.1%; running, 5.5%)(Figure 2-3).  

 
 

We used a 4-by-1 analysis of covariance (ANCOVA) to assess changes in the power 

spectra of the EEG signals across gait conditions prior to performing gait-related artifact 

removal. Spectral frequency was treated as a covariate. To test the hypothesis that the 

gait-related artifact removal procedures would decrease the spectral power in the EEG 

signals for all locomotion conditions (slower walking, faster walking, and running), we 

used the same ANCOVA model and introduced method of artifact removal (before 

artifact removal, after channel-based removal, after further IC-based removal) as a 

repeated measure. All statistical analysis was performed in SPSS 17.0 (SPSS Inc., 

Figure 2-3: Grand average power spectral 

density of the IC-based artifact templates 

that were removed from the EEG signals 

during (blue line) walking at 0.8 m/s, 

(green line) walking at 1.25 m/s, and (red 

line) running at 1.9 m/s. The shaded 

region indicates the frequency band (1.5 

Hz to 8.5 Hz) used in subsequent 

statistical analyses. Error bars show ± 1 

standard deviation. 
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Chicago, IL). Significance was set at α = 0.05 a priori. Bonferroni correction was used to 

address the problem of multiple comparisons.  

Stimulus-Locked Event Related Potentials 

EEG signal epochs were extracted, time-locked from -600 ms to +1000 ms relative 

to visual stimulus onsets. Epochs containing artifacts not related to locomotion (such as 

eye movements and line noise) were excluded from further analysis using EEGLAB 

routines that determined the probability of occurrence of each trial by computing the 

probability distribution of EEG channel signals. Epochs with a probability of occurrence 

greater than 3 std. dev. from the mean across all epochs were rejected from further 

analysis (Delorme et al., 2007). The remaining epochs were averaged to form EEG 

channel-based event-related-potentials (ERPs). Additionally, these epochs were 

multiplied by the ICA unmixing matrix to form IC activity epochs and then averaged 

across epochs to form IC-based ERPs.  

Here, an alternative approach would have been to remove ocular, electrocardiac, 

and other non gait-related artifacts using ICA (Jung et al., 2000a; Jung et al., 2000b). 

However, if ICA-based artifact removal techniques had been implemented it would have 

been difficult to isolate the effects of the template regression procedure on the channel 

power spectra from the effects of ICA-based artifact removal techniques. The artifact 

rejection procedure that we implemented ensured that gait-related artifact, which was 

present in all trials, remained whereas other artifact events such as eye blinks and line 

noise were minimized in the data analyzed.  
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Next, ICs were clustered across subjects using EEGLAB routines implementing k-

means clustering on vectors jointly coding differences in IC scalp maps, power spectra, 

and ERPs; the resulting joint vector was reduced to 10 principal dimensions using 

principal component analysis (PCA) (Gramann et al., 2009; Jung et al., 2001). Previous 

analysis of a similar visual oddball discrimination task for seated subjects demonstrated 

that brain processes projecting maximally to the frontal midline would contribute 

substantially to the ERP, particularly to the post-motor positivity (Makeig et al., 2004). 

Visualizations of grand average IC-based ERPs confirmed that the mediofrontal IC cluster 

(comprised of components projecting maximally to the frontal midline) had a clear and 

substantial stimulus-locked ERP. Additionally, at least one IC from each subject was 

contained in this cluster. Therefore, the ICs in the mediofrontal cluster were selected for 

further analysis of the artifact removal procedures. For all ICs in the mediofrontal 

cluster, each gait condition, and each stage of artifact removal, we computed stimulus-

locked IC-based ERPs and compared their time profiles across conditions.  

 

Results 

Power spectral density of the recorded EEG signals increased with step frequency 

(Figure 2-4).  A 4-by-1 ANCOVA, with spectral frequency (1.5 Hz to 8.5 Hz) as the 

covariate, demonstrated significant differences in spectral power across gait conditions 

before gait-related artifact removal (F(3,1) =  14824, p < 0.001). Grand mean spectral 

powers were 3.45 µV2/Hz, 4.43 µV2/Hz, 5.49 µV2/Hz, and 65.01 µV2/Hz during standing, 

slow walking, faster walking, and running, respectively. In the running condition, the 
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amplitude of EEG signals before artifact removal could be an order of magnitude larger 

than after artifact removal (Figure 2-5). 

 
  

The gait-related artifact removed was quasi-periodic at the stride frequency. The 

most pronounced gait-related artifacts tended to be 180-degrees out of phase with 

vertical center-of-mass displacement as estimated from the displacement of motion-

capture markers on the pelvis (Gard et al., 2004). However, spectral power in the gait-

related artifact template was not isolated to the mean step frequency and its 

harmonics. This likely reflects the complex dynamic interaction between the EEG 

sensors, the EEG wires, the head cap, and the head, as well as to step-to-step variations 

in stride duration. For example, stride duration varied from roughly 720 ms to 800 ms 

for the running subject shown in Figure 6. In addition, the amplitude of the movement 

artifact steadily increased over many strides. The template regression procedure was 

developed to account for these slow (over many strides) and fast (stride-to-stride) 

fluctuations in gait-related artifact (Figure 2-6). After performing removal of gait-related 

artifact, the EEG signals appeared much cleaner (Figure 2-6).  

Figure 2-4: Grand average EEG spectral 

power in the 1.5 Hz to 8.5 Hz band for each 

subject and each gait condition plotted 

versus the subject-specific step frequency.  

(Circle) walking at 0.8 m/s, (star) walking at 

1.25 m/s, and (triangle) running at 1.9 m/s. 

The gray horizontal line indicates the grand 

mean spectral power in the 1.5 to 8.5 Hz 

range for the standing condition. The black 

dashed line indicates a best fitting line 

through the data (R
2
 = 0.75). 
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To evaluate the effects of the artifact removal procedures on the EEG signal power 

spectra, we introduced artifact removal method into our ANCOVA model as a repeated 

measure. Across all gait conditions, spectral power in the EEG signals decreased with 

each iteration of the artifact removal procedure (F(2,1) = 16797, p < 0.001). In both 

Figure 2-5: Five seconds of EEG from a representative subject running at 1.9 m/s  

(A) before and (B) after performing channel-based and IC-based artifact 

removal. The corresponding vertical center-of-mass displacement is shown in 

panel C. Vertical lines indicate (red) left toe off, (green) right heel strike, (blue) 

right toe off, and (black) left heel strike. (Lower head) Topographical layout of 

the 11 displayed EEG channels. 
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walking conditions (0.8 m/s and 1.25 m/s), gait-related artifact removed from the EEG 

signals was minimal (Figure 2-7 A+B). However, in the running condition (1.9 m/s) the 

EEG signals exhibited substantial increases in spectral power across a broad spectrum 

and particularly at the mean step frequency and its harmonics. This artifact was reduced 

but not eliminated by the channel-based and IC-based artifact rejection procedures 

(Figure 2-7 C).  

 
 

After IC-based artifact removal the grand mean spectral powers were 3.5 µV2/Hz, 

3.9 µV2/Hz, and 31.7 µV2/Hz for slow walking, faster walking, and running, respectively. 

The differences in the grand mean spectral power between the standing condition and 

the movement conditions remained significant for running (p < 0.001) and fast walking 

(p < 0.001) but not for slow walking (p = .756).  

Figure 2-6: Single-stride EEG signals at channel C1 

during running at 1.9 m/s for a representative subject. 

Signals are plotted as color-coded horizontal lines 

smoothed with a (vertical) moving average of 5 strides. 

Strides are sorted chronologically; zero latency 

represents a left heel strike (LHS) and the solid traces 

represent the latency of the next right and then left 

heel strikes (RHS and LHS, respectively). (Top left panel)  

The EEG signals before artifact removal; (top center panel) the gait-related artifact templates 

removed; (top right panel) the EEG signals remaining after channel- and IC-based artifact removal; 

(bottom right panel) the EEG signals remaining shown on a 10-times finer color scale than the top 

panels. The location of channel C1 is shown in Figure 2-5. 
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Figure 2-7: EEG channel power spectral density envelopes (max and min channel spectra). 

(Dashed line) before artifact removal, (dash-dot line) after performing channel-based 

artifact removal, and then (solid line) after performing IC-based artifact removal for a 

representative subject (A) walking at 0.8 m/s, (B) walking at 1.25 m/s, and (C) running at 

1.9 m/s. Gray vertical lines indicate the mean step frequency in each condition. 

 

There was a significant interaction between subject and artifact removal method 

(F(5,2) = 644, p < 0.001). Specifically, further decreases in spectral power after IC-based 

removal (compared to spectral power after channel-based artifact removal) were 

evident for some (3) but not all (6) subjects (Figure 2-8). 
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Figure 2-8: Average spectral power in the 1.5 Hz to 8.5 Hz band during 1.9 m/s running 

(A) for all channels and subjects, and (B) for all channels for each subject separately: 

(black) before artifact removal; (grey) after channel-based artifact removal; (white) after 

subsequent IC-based artifact removal. Error bars show ±1 standard deviation, * p <  0.01 , 

** p <  0.001. 

 
EEG signal epochs were extracted from -600 ms before to +1000 ms after visual 

stimulus onsets; these epochs were then averaged to form EEG channel ERPs. In the 

running condition, channel ERPs appeared cleaner after gait-related artifact removal 

than before artifact removal (Figure 2-9). 

 
Figure 2-9: Mean target ERPs of 5 EEG channels from a representative subject during running at 1.9 m/s. 

The scalp locations of the 5 EEG channels are shown in the bottom left panel. In each panel, three 

stages of analysis are shown: before artifact removal (blue trace); after performing channel-based 

artifact removal (green trace); after subsequent IC-based artifact removal (black trace). Zero latency 

represents the onset of the visual target stimulus. 
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In both walking conditions, ERPs time-locked to visual target stimulus onsets for ICs 

in the mediofrontal cluster, before and after artifact removal, appeared similar in time 

profile and amplitude to ERPs for the same ICs recorded in the standing condition. 

Before artifact removal, the amplitudes and time profiles of the IC ERPs in the running 

condition did not resemble those in the standing condition; after artifact removal, the IC 

ERPs in the running and standing conditions appeared similar (Figure 2-10). 

 
Figure 2-10: Mean target ERP of a mediofrontal independent component from a representative subject. 

The scalp topography of the selected IC is shown below the legend. Traces show ERPs in three gait 

conditions: (A) walking at 0.8 m/s; (B) walking at 1.25 m/s; (C) running at 1.9 m/s. In each panel, the 

ERP while standing is shown (red traces) along with ERPs in three stages of analysis: before artifact 

removal (blue traces); after performing channel-based artifact removal (green traces); after subsequent 

IC-based artifact removal (black traces). Zero latency represents the onset of the visual target stimulus.  

Vertical axis units: root-mean square microvolt projection of the IC process to all the scalp electrodes. 
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Discussion 

To our knowledge, this is the first study of EEG and ERPs from a cognitive task 

recorded during human locomotion. Our results demonstrate the feasibility of removing 

gait-related movement artifact from EEG signals so that electrocortical processes that 

are associated with cognitive, motor, or perceptual tasks performed during locomotion 

can be studied. Specifically, we have demonstrated that by using high-density EEG 

recordings with (≤ 248) active electrodes synchronized to motion capture and 

mechanical force measurements it is possible to analyze EEG and derived ERP signals 

during walking, and that for a visual oddball task these have similar continuous and 

event-related dynamics as in a standing subject condition. Further, in a more active 

locomotor condition (1.9 m/s running), we demonstrated successful application of 

artifact removal techniques that take into account the time-varying nature of the gait-

related artifact to separate brain EEG signals from gait-related noise. In the running 

condition, similar average ERP time-courses of IC processes were only detectable after 

artifact removal. 

To do this we modified existing artifact removal techniques, designed for time-

invariant noise sources (Allen et al., 2000), and applied them to EEG signals containing 

time-varying gait-related movement artifact. The artifact removal method that we 

implemented was intended to remove artifacts that were phase-locked to the gait cycle. 

Other artifacts (e.g., line noise, eye movement, and muscle activities) were not removed 

by these means. These artifacts can be addressed by other methods, such as by 
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identifying independent components (ICs) that explain the portions of the EEG 

associated with these processes (Jung et al., 2000a; Jung et al., 2000b).  

The artifact removal method implemented here involved: 1) performing a linear 

time-warping procedure to align heel strike events to a common latency template prior 

to performing artifact removal, 2) computing an artifact template for each stride based 

on the surrounding 20 strides, 3) using linear regression to fit a channel-based artifact 

template to the recorded signals for each stride, 4) performing ICA decomposition on 

the continuous data, 5) using linear regression to remove a component-based artifact 

template from recorded signals for each stride, 6) applying reverse time warping to the 

artifact-reduced component signals, and 7) applying the ICA mixing matrix to recover 

the artifact-reduced channel signals (Figure 2-2). We found that in 3 of the 6 subjects, 

applying the second stage of artifact removal (IC-based artifact removal, steps 4-7 

above) provided a clear further reduction in gait-related movement artifact. The head 

cap may have fit some subjects better than others, and the running mechanics of certain 

subjects may have lead to more dramatic head accelerations. Nevertheless, it is not 

entirely clear why these further reductions were evident in some but not all subjects.   

The artifact removal method that we implemented requires considerable 

computational resources. In order to run ICA, enough RAM must be available to load all 

EEG signals for each subject into the Matlab workspace (up to 248 channels X 512 

samples/sec X 70 minutes, occupying 2 GB in single precision). Using 16-GB nodes of a 

computer cluster, we encountered no memory problems. AMICA is designed to run in 

parallel over several nodes, and computation time scales near-linearly with the number 
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of nodes available. By processing in parallel over 8 nodes, we were able to run AMICA 

for each subject overnight. 

While 248 channels of EEG were recorded for each subject, on average only 130 

channels were retained for analysis. A contributing factor here was that only a single 

electrode cap was available. While attempts were made to recruit subjects with 

appropriately sized heads, in some cases the head cap was too large for the subject 

(particularly in the posterior neck region). Because of un-resolvable artifact caused by 

loose electrode placements, particularly noticeable in the running condition, 55 of the 

248 electrodes were rejected more than 75% of the time; these electrodes were highly 

concentrated in the posterior neck region. The custom head cap was designed to cover 

regions of the head and neck below the level of the inion (Figure 2-1). This design was 

useful for recording neck muscle contributions to ongoing EEG in looking and pointing 

tasks (Gramann et al., 2009; Makeig et al., 2009) but it was not optimal for recording 

EEG during locomotor tasks, as it did not allow the head and posterior neck portions of 

the cap to move with respect to each other.  

There are many areas for further study that arise from the work presented here. 

We used active electrodes for this study that passed high-level signals through the 

electrode cables. Undoubtedly, passive electrodes would be more prone to movement 

artifacts arising from cable sway. Whether or not the artifact removal method that we 

implemented could be used to remove movement artifact from EEG recorded with 

passive electrodes during walking and running should be studied. In addition, wireless 

EEG systems, now in development in many places, would likely reduce, but likely not 
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eliminate, movement artifact. When possible, the artifact removal method proposed 

here should be re-evaluated using wireless electrodes. Furthermore, we selected a 20-

stride moving window for the artifact template because we found that this provided 

enough steps to generate a smooth template yet was still sensitive to the long-term 

(over many steps) variations in the movement artifact. Further parametric analysis to 

determine the optimal number of strides to include in the artifact template is 

recommended. Finally, we have applied the artifact removal method to EEG collected 

during a visual oddball task. Future studies should examine other types of tasks.   

We evaluated the efficacy of the procedure on EEG collected during treadmill 

walking and running, relatively rhythmic motor tasks. However, the artifact removal 

procedure we implemented is not inherently limited to removing quasi-rhythmic motor 

artifacts. It may be possible to use a related procedure to remove mechanical artifact 

from bio-electric signals recorded during other locomotor tasks, such as tasks involving 

rapid directional changes or responses to ground perturbations, provided enough trials 

are available for creation of an appropriate set of artifact templates and movement-

related kinematic signals are available for performing appropriate time-warping.  Here, 

a simple stride-order based moving average template was effective. In conditions 

involving locomotor challenges, extraction of mean templates might for instance be 

based on moving averages of trials sorted by challenge as well as time on task. Further, 

if head kinematics were recorded and synchronized to the EEG data stream in real time, 

it might be possible to perform mechanical artifact removal online, with a delay limited 
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only by the duration of the mechanical artifact template.  These are avenues of inquiry 

worthy of pursuit. 

Mobile recordings of EEG signals during natural behaviors may provide a foundation 

for further exploration into the complex links between distributed brain dynamics and 

motivated natural behavior. Makeig and colleagues have proposed a wearable mobile 

brain/body imaging (MoBI) system and new data-driven analysis methods to model the 

complex resulting data (Makeig et al., 2009). The artifact removal procedures 

demonstrated here may enable the use of MoBI in more dynamic environments than 

previously thought.  
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Chapter 3: Electrocortical Activity is coupled to Gait Cycle Phase during Treadmill 

Walking      

 
This chapter has been previously published: 

Gwin JT, Gramann K, Makeig S, Ferris DP. Neuroimage 54: 1289-1296, 2011. 

 
 

Abstract  

Recent findings suggest that human cortex is more active during steady-speed 

unperturbed locomotion than previously thought. However, techniques that have been 

used to image the brain during locomotion lack the temporal resolution necessary to 

assess intra-stride cortical dynamics. Our aim was to determine if electrocortical activity 

is coupled to gait cycle phase during steady-speed human walking. We used 

electroencephalography (EEG), motion capture, and a force-measuring treadmill to 

record brain and body dynamics while eight healthy young adult subjects walked on a 

treadmill. Infomax independent component analysis (ICA) parsed EEG signals into 

maximally independent component (IC) processes representing electrocortical sources, 

muscle sources, and artifacts. We calculated a spatially fixed equivalent current dipole 

for each IC using an inverse modeling approach, and clustered electrocortical sources 

across subjects by similarities in dipole locations and power spectra. We then computed 

spectrograms for each electrocortical source that were time-locked to the gait cycle. 

Electrocortical sources in the anterior cingulate, posterior parietal, and sensorimotor 

cortex exhibited significant (p<0.05) intra-stride changes in spectral power. During the 
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end of stance, as the leading foot was contacting the ground and the trailing foot was 

pushing off, alpha- and beta-band spectral power increased in or near the left/right 

sensorimotor and dorsal anterior cingulate cortex. Power increases in the left/right 

sensorimotor cortex were more pronounced for contralateral limb push-off (ipsilateral 

heel-strike) than for ipsilateral limb push-off (contralateral heel-strike). Intra-stride high-

gamma spectral power changes were evident in anterior cingulate, posterior parietal, 

and sensorimotor cortex. These data confirm cortical involvement in steady-speed 

human locomotion. Future applications of these techniques could provide critical insight 

into the neural mechanisms of movement disorders and gait rehabilitation. 

 

Introduction  

Vertebrate legged locomotion requires dynamic interaction between peripheral 

sensors, central pattern generators, and supraspinal locomotion centers (Grillner et al., 

2008; Rossignol et al., 2006). It is generally accepted that humans use a multifaceted 

locomotion control strategy, including descending, peripheral, and central inputs (Dietz, 

2003; Dietz and Duysens, 2000; Drew et al., 2004; Nielsen, 2003; Yang and Gorassini, 

2006). Spinal locomotor networks in humans and other vertebrates are capable of 

generating rhythmic muscle activity (Dietz, 2003; Dimitrijevic et al., 1998; Grillner, 1985; 

Rossignol, 2000; Rossignol et al., 2006; Shik and Orlovsky, 1976). However, activating 

this network in humans without functional descending motor pathways has proven to 

be difficult (Dietz et al., 1995; Ferris et al., 2004; Fong et al., 2009; Wirz et al., 2001). 

Some supraspinal locomotor centers are organized hierarchically in the brainstem, 
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cerebellum, and cortex. This hierarchical structure facilitates integration of multi-

sensory information for dynamic control during gait (Fong et al., 2009; Rossignol et al., 

2006). However, primates (including humans) also have a monosynaptic corticospinal 

pathway connecting the motor cortex to spinal motoneurons.  

Several research areas have provided indirect evidence of cortical involvement in 

human locomotion. Dual-task experiments have demonstrated that balance during 

walking can be negatively affected by concomitant information processing (Woollacott 

and Shumway-Cook, 2002).  Positron emission tomography (PET) and functional 

magnetic resonance imaging (fMRI) have demonstrated that during rhythmic foot or leg 

movements the primary motor cortex is activated, consistent with expected 

somatotopy, and that during movement preparation and anticipation frontal and 

association areas are activated (Christensen et al., 2000; Dobkin et al., 2004; Heuninckx 

et al., 2005; Heuninckx et al., 2008; Luft et al., 2002; Sahyoun et al., 2004). Furthermore, 

electrophysiological studies of similar tasks have demonstrated lower limb movement 

related electrocortical potentials (Wieser et al., 2010), as well as coherence between 

electromyographic and electroencephalographic signals (Hansen and Nielsen, 2004; 

Raethjen et al., 2008). These studies can be extrapolated to make predictions about 

locomotion.  

Direct evidence for cortical involvement in human locomotion comes from studies 

using functional near-infrared spectroscopy (fNIRS) and PET. Using fNIRS, researchers 

demonstrated increases in oxygenated hemoglobin in the frontal, premotor, and 

supplementary motor cortex during walking (Harada et al., 2009; Miyai et al., 2001; 
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Suzuki et al., 2008; Suzuki et al., 2004). In a recent study using PET before and 

immediately after imagined and real walking, researchers found that imagined 20 

second bouts of walking beginning from stance activated an indirect pathway via the 

supplementary motor cortex and basal ganglia loop, while 20 minutes of real steady 

speed walking activated a direct corticospinal pathway via the primary motor cortex  (la 

Fougere et al., 2010). The authors suggested that the direct corticospinal pathway is 

responsible for execution of locomotion in a non-modulatory state while the indirect 

pathway is responsible for planning and modulation of locomotion. In that framework, 

intra-stride phasic cortical activity associated with integration of afferent sensory 

information and maintenance of a steady gait might be expected. However, it is difficult 

to disentangle differences between real and imagined locomotion from differences 

between short bouts of walking initiated from stance and long bouts of steady speed 

walking. 

Transcranial magnetic stimulation (TMS) facilitates direct study of intra-stride 

modulations in corticospinal excitability. Studies using transcranial magnetic stimulation 

(TMS) have shown that activation of inhibitory circuits in the motor cortex during steady 

walking disrupts ongoing cortico-muscular interaction and reduces lower limb (plantar- 

and dorsi-flexor) activity (Capaday et al., 1999; Christensen et al., 2001; Petersen et al., 

2001; Schubert et al., 1999; Schubert et al., 1997), as well as upper-limb (posterior 

deltoid) activity (Barthelemy and Nielsen, 2010). In addition, motor evoked potentials 

(MEPs) in plantar- and dorsi-flexors evoked by TMS are evident only during phases of 

the gait cycle where a particular muscle is active; for example MEPs in the soleus are 
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present during stance and absent during swing (Capaday et al., 1999; Schubert et al., 

1997). At least part of this MEP modulation is caused by changes in excitability of 

monosynaptic corticospinal cells (Petersen et al., 2001). 

In animal models, microwire electrode arrays implanted into the cortex have 

provided evidence of intra-stride modulations of neuronal firing rates. In feline posterior 

parietal cortex (Andujar et al., 2010; Beloozerova and Sirota, 2003; Lajoie et al., 2010) 

and motor cortex (Armstrong and MarpleHorvat, 1996; Drew, 1993; Drew et al., 2002; 

Widajewicz et al., 1994) neuronal firing rates exhibit peaks that are synchronized to the 

gait cycle. These studies suggest that feline posterior parietal cortex likely plays a role in 

visuo-motor integration during locomotion while motor cortex contributes to gait 

execution. Additionally, lower limb muscle activations and joint angles have been 

decoded from motor cortex neuronal firing rates in rhesus monkeys during bipedal 

walking (Fitzsimmons et al., 2009). Taken together these studies demonstrate the 

existence of intra-stride modulations in cortical activity in various vertebrate animals.   

Electroencephalography (EEG) is the only non-invasive brain imaging modality that 

uses sensors that are light enough to wear during ambulation and have sufficient time 

resolution to record intra-stride changes in brain activity (Makeig et al., 2009). 

Independent component analysis (ICA) combined with magnetic resonance based head 

models can be used to overcome electromyographic, electroocular, movement artifact, 

and line noise contamination of EEG signals (Delorme and Makeig, 2004; Delorme et al., 

2007; Gwin et al., 2010b; Jung et al., 2000a; Jung et al., 2000b; Makeig et al., 1996; 

Makeig et al., 2009; Onton et al., 2006). We have previously demonstrated that high-
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density EEG can be used to record electrocortical dynamics associated with cognitive 

tasks during walking and running (Gwin et al., 2010b). Specifically, we identified a 

visually evoked target response in human electrocortical activity during walking and 

running that was similar to the visually evoked target response during standing. The 

purpose of this study was to use high-density EEG to examine patterns of intra-stride 

electrocortical dynamics during steady-speed human walking. Our hypothesis was that 

electrocortical dynamics, particularly in the sensorimotor cortex, would exhibit intra-

stride patterns of activation and deactivation. In addition to providing insight into how 

the human central nervous system coordinates locomotion, we believe that in the long 

run these dynamics may be of use for brain-machine interface (BMI) based 

neurorehabilitation (Daly and Wolpaw, 2008; Yang and Gorassini, 2006) and that future 

applications of these techniques could provide critical insight into the neural 

mechanisms of movement disorders and gait rehabilitation. 

 

Methods 

Data Collections 

Eight healthy volunteers with no history of major lower limb injury and no known 

neurological or locomotor deficits completed this study (7 males and 1 female, age 

range 21-31 years). All subjects provided written informed consent prior to the 

experiment. All procedures were approved by the University of Michigan Internal 

Review Board and complied with the standards defined in the Declaration of Helsinki.  
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Subjects stood, walked (0.8 m/s and 1.25 m/s), and ran (1.9 m/s) on a force 

measuring treadmill (Collins et al., 2009) facing a monitor placed at eye level about 1 m 

in front of them while we recorded 248-channel electroencephalography (EEG), lower 

limb kinematics, and ground reaction forces. One objective of this data collection was to 

test the feasibility of recording cognitive brain processes during human locomotion 

(Gwin et al., 2010b). In order to do this standard (80%) and target (20%) stimuli (vertical 

or 45° rotated black crosses on a white background, respectively) were displayed on the 

monitor for 500 ms with a random inter-stimulus interval between 500 ms and 1500 ms. 

For each gait condition (standing, slower walking, faster walking, running) subjects 

performed an experimental block wherein they were asked to press a handheld button 

whenever the target stimulus appeared and a control block wherein no manual 

response to the target stimulus was required. Each session began with the standing 

condition, followed by the other three conditions in random order. The standing blocks 

lasted 5 minutes each while the walking and running blocks lasted 10 minutes each. For 

the present study we analyzed data from the walking control conditions. Data collected 

during running were not used due to the presence of large mechanical artifacts in the 

EEG signals. 

We recorded EEG using an ActiveTwo amplifier and a 248-channel active electrode 

array (BioSemi, Amsterdam, The Netherlands). The BioSemi software sampled the EEG 

signals at 512 Hz per channel. Prior to data collection, we measured electrode 

impedance and used electrode gel to ensure that the impedance was less than 20 KΩ for 

each channel.  After data collection we high-pass filtered the EEG signals above 1 Hz. As 
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in (Gwin et al., 2010b) EEG signals exhibiting substantial noise throughout the collection 

were removed from the data in the flowing manner: 1) channels with std. dev. > 1000 

µV were removed, 2) any channel whose kurtosis was more than 5 std. dev. from the 

mean was removed, and 3) channels that were uncorrelated (r < 0.4) with nearby 

channels for more than 1% of the time-samples were removed. On average 130.4 EEG 

channels were retained for analysis (range, 89-164; std. dev., 24.6). These remaining 

channel signals were then re-referenced to an average reference. All processing and 

analysis was performed in Matlab (The Mathworks, Natick, MA) using scripts based on 

EEGLAB 7.1.4 (sccn.ucsd.edu/eeglab), an open source environment for processing 

electrophysiological data (Delorme and Makeig, 2004).  

We recorded the positions of 25 reflective markers on the lower limbs and the 

pelvis using an eight-camera motion capture system (Motion Analysis Corporation, 

Santa Rosa, CA). Marker positions were sampled at 120 Hz and low pass filtered at 6 Hz 

to remove movement artifact. Visual-3D software (C-Motion, Germantown, MD) 

computed the kinematics of the ankle, knee, and hip joints based on these marker 

positions. Event detection algorithms within Visual-3D determined when heel-strike and 

toe-off occurred based on vertical ground reaction forces and lower limb kinematics 

(Stanhope et al., 1990).  

Data Analyses 

We applied an adaptive mixture independent component analysis (ICA) algorithm 

[AMICA] (Palmer et al., 2006; Palmer et al., 2008) that generalizes infomax (Bell and 

Sejnowski, 1995; Lee et al., 1999a) and multiple mixture (Lee et al., 1999b; Lewicki and 
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Sejnowski, 2000) ICA approaches, to parse EEG signals into spatially static, maximally 

independent component (IC) processes (Makeig et al., 1996). Prior to performing ICA 

decomposition, time-periods of EEG with substantial artifact, as defined by z-

transformed power across all channels in a given time window being larger than 0.8, 

were rejected using EEGLAB.  

DIPFIT functions within EEGLAB (Oostenveld and Oostendorp, 2002) computed an 

equivalent current dipole model that best explained the scalp topography of each IC 

using a boundary element head model based on the Montreal Neurological Institute 

(MNI) template (the average of 152 MRI scans from healthy subjects,  available at 

www.mni.mcgill.ca). We excluded ICs from further analysis if the projection of the 

equivalent current dipole model to the scalp accounted for less than 80% of the scalp 

map variance, or if the topography and time-course of the IC was reflective of eye 

movement artifact (Jung et al., 2000a; Jung et al., 2000b).  The remaining ICs were 

classified as electrocortical sources or muscle sources based on inspection of their 

power spectra and the locations of their equivalent current dipoles. Next, electrocortical 

sources were clustered across subjects using EEGLAB routines implementing k-means 

clustering on vectors jointly coding differences in equivalent dipole locations and power 

spectra; the resulting joint vector was reduced to 10 principal dimensions using principal 

component analysis (Gramann et al., 2009; Jung et al., 2001).  

We generated spectrograms for each electrocortical source during each gait cycle 

for each subject. For comparison purposes we selected a subset of muscle sources 

located around the left and right mastoid processes (possibly representing left and right 
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sternocleidomastoid EMG) and computed similar spectrograms. The single-trial 

spectrograms were then linearly time-warped so that both right and left heel-strikes 

occurred at the same adjusted latencies in each epoch (Makeig et al., 2007). To visualize 

intra-stride changes in the spectrograms, we subtracted the average log spectrum for all 

gait cycles from the log spectrogram for each gait cycle. We refer these changes from 

baseline as gait event related spectral perturbations (ERSP) (Makeig, 1993). We 

generated grand average mean ERSP plots for each cluster of electrocortical sources at 

each walking speed. Significant gait ERSPs (p<0.05) were identified using a 

bootstrapping method available within EEGLAB (Delorme and Makeig, 2004). In order to 

visualize the relative timing of spectral power fluctuations we computed the average 

gait ERSP for each electrocortical source in the alpha (8-12 Hz), beta (12-30 Hz), and 

high-gamma (50-150 Hz) frequency bands. We displayed these average ERSPs in 

separate line plots for each frequency band.   

 

Results 

Clusters of electrocortical sources that were identified by ICA and inverse source 

modeling were spatially localized to the prefrontal cortex (5 electrocortical sources), left 

and right sensorimotor cortex (7 and 6 sources), anterior cingulate cortex (9 sources), 

and posterior parietal cortex (13 sources) (Figure 3-1). Electrocortical sources were also 

identified in the left premotor cortex, left/right temporal lobe, and left/right occipital 

lobe, but these sources were found in less than half of our subjects and so were not 

included in subsequent analysis. Gait ERSPs revealed small but significant modulations 
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of spectral power within IC clusters localized in or near the anterior cingulate, posterior 

parietal, and left/right sensorimotor cortex (Figure 3-2). Finding no significant 

differences between gait ERSPs for 0.8 and 1.25 m/s walking, we averaged the gait 

ERSPs across walking speeds.  

 
Figure 3-1: Clusters of electrocortical sources localized to the anterior cingulate cortex (blue), 

prefrontal cortex (purple), posterior parietal cortex (green), and sensorimotor cortex (red).  

Small spheres indicate the equivalent current dipole locations for single electrocortical 

sources for single subjects; larger spheres indicate geometric cluster centroids. The locations 

of the equivalent current dipoles for muscle sources are shown in yellow. 

 

Cortical local field potential activity represents net potentials within complex local 

thalamocortical and cortico-cortical networks with many modulatory influences. 

Cortically generated far-field EEG activity recorded at scalp electrodes reflects partial 

synchrony of local field potentials across a compact cortical domain (on the order of a 

cm2) that is far larger than a few neurons. Increased EEG power relative to the mean 

baseline, shown in Figure 3-2 by warm colors, may reflect a mean increase in the degree 

of local synchrony within the source domain, a change in the size of the source domain, 

and/or stronger local field activity within the source domain. Decreased power is 

indicated by cool colors. 
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Figure 3-2: Gait event-related spectral perturbation (ERSP) plots showing average 

changes in spectral power during the stride cycle relative to the full gait cycle baseline 

for (top left) the right sensorimotor cluster, (top right) the posterior parietal cluster, 

(bottom left) the left sensorimotor cluster, and (bottom right) the anterior cingulate 

cluster. The gait cycle begins and ends with left toe-off (LOFF). Vertical lines indicate 

the timing of left heel-strike (LON), right toe-off (ROFF), and right heel-strike (RON). 

Non-significant differences (p>0.05) have been set to 0 dB (green). 

 
Significant alpha- and beta-band power increases in or near the left/right 

sensorimotor and dorsal anterior cingulate cortex occurred during the end of stance as 

the leading foot was contacting the ground and the trailing foot was pushing off. Power 

increases in the left/right sensorimotor cortex were more pronounced for contralateral 

limb push-off (ipsilateral heel-strike) than for ipsilateral limb push-off (contralateral 

heel-strike) (Figure 3-2). Within the alpha- and beta-bands, spectral fluctuations for all 

four electrocortical sources were in phase with each other. Peaks in beta-band spectral 

power preceded peaks in alpha-band spectral power by roughly 8% of the gait cycle; 
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beta-band peaks occurred at heel-strike while alpha-band peaks occurred roughly half-

way through the double support phase (Figure 3-3). Power increases in the high-gamma 

band occurred for all clusters (Figure 3-2). With the exception of the right sensorimotor 

source, high-gamma spectral fluctuations across the electrocortical domains were in 

phase with each other and exhibited more peaks per gait cycle than the alpha- and beta-

band spectral fluctuations. High-gamma spectral fluctuations in the right sensorimotor 

source were out of phase with high-gamma fluctuations in the other electrocortical 

domains (Figure 3-3). 

 
Figure 3-3: Average gait event-related spectral perturbation (ERSP) line plots  

for the (top left) alpha (8-12 Hz), (top right) beta (12-30 Hz), and (bottom left) 

high-gamma frequency bands. Each cluster of electrocortical sources is 

represented by a colored trace: (red) right sensorimotor cluster, (magenta) left 

sensorimotor cluster, (green) posterior parietal cluster, and (blue) anterior 

cingulate cluster. The gait cycle begins and ends with left toe-off (LOFF). Vertical 

lines indicate the timing of left heel-strike (LON), right toe-off (ROFF), and right 

heel-strike (RON). 
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To highlight the importance of extracting neck muscle contributions from the EEG 

signals, we have also shown gait ERSP plots for groups of muscle sources that were 

localized to the region around the left/right mastoid processes (Figure 3-4). Muscle 

sources exhibited larger intra-stride spectral power changes than electrocortical 

sources; as such, the color scale in Figure 3-4 is four times coarser than in Figure 3-2. 

The broad spatial distribution of all neck muscle sources (Figure 3-1) is reflective of the 

fact that many neck muscles contribute to head stabilization during walking (Cromwell 

et al., 2001). Only one subset of these neck muscle sources is represented in Figure 3-4, 

with the intent of demonstrating that the magnitude of electromyographic spectral 

fluctuations can be at least 4X greater than the magnitude of electrocortical spectral 

fluctuations. 

 
Figure 3-4: Gait event-related spectral perturbation (ERSP) plots showing average changes in 

spectral power relative to a full gait cycle baseline for a subset of neck muscle components  

localized to the region around the left (shown left) and right (shown right) mastoid processes. 

These clusters may represent left and right sternocleidomastoid EMG and are shown for 

comparison with Figure 2. Note that the color scale is coarser than Figure 2. The gait cycle 

begins and ends with left toe-off (LOFF). Vertical lines indicate the timing of left heel-strike 

(LON), right toe-off (ROFF), and right heel-strike (RON). Non-significant differences (p> 0.05) 

have been set to 0 dB (green). 
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Discussion  

To our knowledge, this is the first study to report intra-stride patterns of spatially 

resolved human brain activation during walking. ICA decomposition parsed scalp EEG 

into activities generated in separate cortical domains, individual neck and scalp muscles, 

and other non-brain artifact sources (eyes, heart, line noise, etc.). We found that small 

but significant changes in the power spectra of various electrocortical processes, which 

were disentangled from scalp EEG by ICA, occurred during particular phases of the gait 

cycle.  

Significant alpha- and beta-band power increases in or near the left/right 

sensorimotor and dorsal anterior cingulate cortex occurred during the end of stance as 

the leading foot was contacting the ground and the trailing foot was pushing off. 

Findings from electrophysiological and imaging studies have suggested that dorsal 

anterior cingulate cortex may be the brain’s center for error detection and correction 

(Bush et al., 2000; O'Connell et al., 2007; Walton et al., 2007). In our study, therefore, 

the increased beta activity in or near anterior cingulate during foot placement could be 

related to foot trajectory error detection and correction. A future experiment that 

examines a walking task requiring more controlled foot placement and step-to-step 

adjustment (e.g., walking on stepping stones or marks on the floor) could test this 

hypothesis. An alternate hypothesis is that medial frontal processes are implicated in 

the transition from flexion to extension (akin to the stance to swing transition in normal 

walking). This hypothesis is supported by a recent study of scalp EEG topography during 
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a rhythmic multi-joint lower-limb movement task designed to mimic walking (Wieser et 

al., 2010).  

Power increases in the left/right sensorimotor cortex were most pronounced during 

the end of contralateral limb stance when maximum lower limb muscle power is 

required (Kuo et al., 2005) but somatosensory attention may shift from the contralateral 

limb to the ipsilateral limb about to be raised (Pfurtscheller et al., 1996). It is possible 

that increased sensorimotor cortex EEG power during push-off indexes stronger lower 

limb muscle recruitment. If so, future studies examining biomechanical perturbations to 

gait might identify correlations between muscle recruitment and electrocortical 

dynamics during walking. Interestingly, electrocortical sources were broadly distributed 

in the lower and upper limb regions of the somatosensory cortex. This may be reflective 

of different attentional strategies between subjects who are more or less accustomed to 

treadmill walking. Future studies examining simultaneous lower and upper limb motor 

tasks could test whether high density EEG and ICA can effectively disentangle sources in 

the upper limb region of the somatosensory cortex from sources in the lower limb 

region.  

Broad high-gamma (50-150 Hz) changes in electrocortical power intra-stride were 

evident in all four electrocortical clusters including the posterior parietal cortex. Prior 

research has suggested that high-gamma activity is increased in human cortex during 

selective attention (Ray et al., 2008), in motor cortex accompanying finger movements 

(Pfurtscheller et al., 1996), and selectively in different cortical regions during various 

imagined emotion states (Onton and Makeig, 2009). Others have proposed that during 
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rhythmic sensory tasks the brain favors a ‘rhythmic mode of operation’ that includes 

entrainment of lower-frequency oscillations to task dynamics and temporal alignment of 

high-frequency oscillations to attended rhythmic events as a means of enhancing 

responses that are in-phase with attended events and suppressing responses that are 

out-of-phase with attended events (Schroeder and Lakatos, 2009). It has also been 

suggested that during dynamic force production the sensorimotor system shifts towards 

gamma frequencies to rapidly integrate multi-sensory information that is required to 

produce the appropriate motor command (Omlor et al., 2007).  

Posterior parietal cortex has been associated with visuo-motor integration and 

bimanual coordination.  Prior research using functional magnetic resonance imaging has 

implicated the posterior parietal cortex in upper-limb reaching (Filimon et al., 2009) and 

in coordination of left and right wrist movements (Wenderoth et al., 2005). In addition, 

microwire arrays implanted into feline posterior partial and motor cortex during flat 

ground and precision walking have suggested that visuo-motor integration during 

locomotion is critically dependent on posterior parietal and motor cortex networks 

(Andujar et al., 2010; Beloozerova and Sirota, 2003; Drew et al., 2002; Lajoie et al., 

2010). In our study, we found (with one exception) that within a given frequency band 

(alpha, beta, or high-gamma) spectral power fluctuations were synchronous across all 

four electrocortical domains but were not uniformly significant (i.e. periods of significant 

spectral fluctuations occurred in different regions of the gait cycle for different 

electrocortical domains, Figure 3-2).  The exception was that high-gamma fluctuations in 

the right sensorimotor cortex were out of phase with high-gamma fluctuations in the 



 48 

other three regions (left sensorimotor, anterior cingulate, and posterior parietal). This is 

consistent with convincing evidence that bilateral coordination preferentially recruits 

the left hemisphere and that the left hemisphere regulates limb position and posture 

(Serrien et al., 2006). Synchronous spectral power fluctuations across the anterior 

cingulate, posterior parietal and left sensorimotor cortex may be reflective of visuo-

motor integration and error monitoring networks.  

In this study we showed intra-stride changes in spectral power of neck and scalp 

muscle sources to demonstrate the importance of spatially filtering EEG signals. Muscle 

source spectral power changes were substantially larger than electrocortical spectral 

power changes. Interestingly, neck muscle sources located around the left and right 

mastoid processes (possibly representing left and right sternocleidomastoid EMG) 

exhibited increased spectral power from ipsilateral heel-strike through contralateral 

toe-off, which may be reflective of head stabilization during locomotion. The 

sternocleidomastoid is only one of several muscles that contribute to head stabilization 

during walking (Cromwell et al., 2001). A more thorough analysis of neck muscle EMG, 

including EMG sources extracted from EEG by the methods presented herein, is needed 

to characterize intra-stride patterns of neck muscle activation and to assess the 

possibility of incomplete decontamination of electrocortical sources.  

The intra-stride changes in electrocortical spectral power identified in this study are 

small, on the order of 0.5 dB (corresponding to a mean 2.5% amplitude increase). 

Nevertheless, the existence of significant intra-stride patterns of activation and 

deactivation suggests that the human cortex is actively engaged during steady-speed 
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locomotion. Given that corticospinal excitability is modulated during the human gait 

cycle (Capaday et al., 1999; Petersen et al., 2001; Schubert et al., 1997) it is likely that 

direct corticospinal pathways contribute to locomotor execution. This hypothesis is also 

supported by a recent PET study of imagined and real walking (la Fougere et al., 2010). 

However, tonic descending inputs to spinal networks from the mesencephalic 

locomotor region of the brainstem can also generate rhythmic muscle activation and 

may be modulated by afferent sensory signals processed in the cortex (Rossignol et al., 

2006). In an in-vitro isolated lamprey brainstem the mesencephalic locomotor region 

has recently been shown to modulate sensory transmission (Le Ray et al., 2010) and 

rhythmic motor tasks have been shown to activate the sensorimotor cortex even when 

performed passively (Christensen et al., 2000). Given these prior results, our finding of 

intra-stride cortical spectral power fluctuations in humans, while novel, is not entirely 

surprising. Furthermore, our finding does not indicate whether human cortex is actively 

involved in controlling locomotion via direct pathways or whether human cortex 

processes sensory afferents that are used to modulate a descending signal to spinal 

generators via the mesencephalic locomotor region. We expect that human cortex in 

fact performs both of these functions. Studying walking under challenging conditions, 

with either increased or decreased sensory demands or availability, may provide a 

means of further testing these hypotheses. It may be easier to discern the precise 

nature of attended sensory events during challenging walking conditions than during 

normal locomotion. For example, close examination of these data revealed no 

relationship between the timing of intra-stride power increases and step-to-step 
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changes in step duration for any of the clusters of electrocortical sources. We expect 

that 1) walking through more complex environments with obstacles and varied terrain 

requires more input from supraspinal centers than steady-speed treadmill walking, and 

2) steady-speed treadmill walking on a flat consistent surface should demand less 

cortical control and adjustment, indexed by less within-stride variation in high-

frequency EEG source activity. However, our data suggest that even under steady-speed 

walking conditions the cortex shows moment-to-moment adjustments in activity tone. 

The locations of the electrocortical sources that were active during walking are mostly 

consistent with results of prior studies using fNIRS and PET. Unlike recent PET results (la 

Fougere et al., 2010), but as expected for scalp EEG data, we did not detect EEG source 

activity in parahippocampal or cerebellar regions.  

In a clinical setting, the ability to quantify brain activation patterns during gait in 

neurologically impaired patients could be helpful as it might allow clinicians to better 

diagnose subsets of patients with similar EEG symptomatology (Alexander et al., 2009; 

Boyd et al., 2007). Most behavioral variables of motor performance (e.g. over-ground 

preferred walking speed) have large inter-subject and intra-subject variability, making 

them coarse measures of motor learning and neural plasticity. Even when behavioral 

measures are robust enough to test the efficacy of therapeutic interventions, methods 

to quantify brain plasticity (versus spinal plasticity or muscle plasticity) are needed for 

studying the underlying mechanisms of motor recovery (Gorassini et al., 2009; Norton 

and Gorassini, 2006; Yang and Gorassini, 2006). Spatially resolved EEG measures might 

help clinicians choose rehabilitation strategies with a better chance of success and might 
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also allow researchers and clinicians to track brain plasticity during interventions to 

gauge the success of an intervention (Boyd et al., 2007; Mielke and Szelies, 2003; 

Weiller, 1998; Yang and Gorassini, 2006). Another potential use of the technique 

presented here would be to identify neural mechanisms of freezing gait in Parkinson’s 

patients.  

In closing, our study suggests that high-density EEG recorded simultaneously with 

body motion capture during ambulation and then spatially resolved using independent 

component analysis can provide insight into the cortical contributions to locomotor 

control and might provide useful information regarding brain activation supporting gait 

in clinical settings.  
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Abstract 

A noninvasive method for imaging the human brain during mobile activities could 

have far reaching benefits for studies of human motor control, for research and 

treatment of neurological disabilities, and for brain-controlled powered prosthetic limbs 

or orthoses. Several recent studies have demonstrated that electroencephalography 

(EEG) can be used to image the brain during locomotion provided that signal processing 

techniques, such as independent Component Analysis (ICA), are used to parse 

electrocortical activity from artifact contaminated EEG. However, these studies used 

high-density 256-channel EEG sensor arrays, which are likely too time-consuming to 

setup in a clinical or field setting. Therefore, it is important to evaluate how reducing the 

number of EEG channel signals affects the electrocortical source signals that can be 

parsed from EEG recorded during standing and walking while concurrently performing a 

visual oddball discrimination task. Specifically, we computed temporal and spatial 

correlations between electrocortical sources parsed from high-density EEG and 

electrocortical sources parsed from reduced-channel subsets of the original high-density 

EEG. For this task, our results indicate that on average an EEG montage with as few as 
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35 channels may be sufficient to record the two most dominate electrocortical sources 

(temporal and spatial R2 > 0.9). Correlations for additional electrocortical sources 

decreased linearly such that the least dominant sources extracted from the 35 channel 

dataset had temporal and spatial correlations of approximately 0.7. This suggests that 

for certain applications the number of EEG sensors used for mobile brain imaging could 

be vastly reduced, but researchers and clinicians must consider the expected 

distribution of relevant electrocortical sources when determining the number of EEG 

sensors necessary for a particular application.  

 

Introduction  

Electroencephalography (EEG) has long been used to record electrocortical activity 

within the brain because it is a safe and non-invasive tool (Klimesch, 1999; Makeig et al., 

2009; Rabbi et al., 2009). EEG is used to monitor ictal and inter-ictal activity in seizure 

patients (Buechler et al., 2008; Rudzinski and Meador, 2011) and to assess cognitive 

processes during neuroscience and psychology experiments (De Raedt et al., 2008; 

Santesso et al., 2008). In addition, EEG is used in brain computer interface devices, 

which enable command of an electronic device by brain activity modulation (Jerbi et al., 

2011; Müller et al., 2008; Patil and Turner, 2008; Sullivan et al., 2008). Current EEG 

systems can have as few as four electrodes (Sullivan et al., 2008) or as many as 256 

electrodes. Until recently, the use of EEG has been limited to stationary settings (i.e., 

settings where the subject is seated or prone) because of the susceptibility of EEG 

electrodes to movement and electromyographic artifacts (Godlove, 2010; Jung et al., 
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2000a). However, we have recently demonstrated that these artifacts can be removed 

from high-density (256-channel) EEG using advanced computational methods; thus 

enabling the use of EEG during walking (Gramann et al., 2011a; Gwin et al., 2010a, b). 

When combined with kinematic motion capture, this novel paradigm has been referred 

to as Mobile Brain Imaging (MoBI) (Makeig et al., 2009) and is gaining traction as a 

viable technique to study the human brain under non-stationary conditions. MoBI will 

open the door to a plethora of new research areas including cognitive control of 

locomotion, brain-body interactions in neurological disorders, and advancements in the 

field of brain-machine interfaces. 

The use of Independent Component Analysis (ICA), a technique that parses 

independent component (IC) signals from correlated time-series data (Delorme and 

Makeig, 2004; Delorme et al., 2007; Gwin et al., 2010b; Jung et al., 2000a; Makeig et al., 

1996; Palmer et al., 2006; Palmer et al., 2008), has been particularly helpful to the 

development of MoBI. ICA of EEG is based on the premise that each electrode on the 

scalp records a linear sum of various underlying electrocortical signals, as well as 

electromyographic, electroocular, electrocardiographic, and movement artifacts. ICA 

can generate one maximally independent source signal (which may reflect an 

electrocortical or artifactual source) for each EEG channel signal recorded; the more EEG 

channels recorded, the more ICs produced (Palmer et al., 2006; Palmer et al., 2008). 

Therefore, it is desirable to record from as many EEG sensors as possible if the intent is 

to capture as many electrocortical processes as possible.  
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Increasing the number of EEG electrodes used is not trivial, and the increase is not 

without drawbacks. For high-density EEG systems, data processing can take a significant 

amount of time, even on large computing clusters. In addition, more electrodes mean 

higher costs and more difficult experimental setups. Lastly, in experimental setups 

involving movement and in many real-world settings, wireless transmission of EEG 

signals is desirable. Increasing the number of electrodes challenges existing wireless 

transmission systems. Given these drawbacks, a question naturally arises: how many 

electrodes are needed for MoBI? The answer will likely depend on the tasks being 

performed and nature of the cognitive activity involved, but we can begin to estimate 

the number for common situations. 

In this study, we assessed how reducing the number of EEG channel signals affects 

the electrocortical source signals that can be parsed from EEG recorded during standing 

and walking using ICA. We performed this assessment using data from (Gwin et al., 

2010b). This study involved subjects standing and walking while performing a visual 

oddball discrimination task. We incrementally reduced the number of channels from the 

EEG montage that were used in the analysis and evaluated changes in the temporal and 

spatial properties of the resulting electrocortical source signals.  

 

Methods 

Data Collections 

Twelve healthy volunteers with no history of major lower limb injury and no known 

neurological or locomotor deficits completed this study (11 males and 1 female, age 
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range 20-31 years). All subjects provided written informed consent prior to the 

experiment. All procedures were approved by the University of Michigan Internal 

Review Board and complied with the standards defined in the Declaration of Helsinki.  

Subjects stood, walked (0.8 m/s and 1.25 m/s), and ran (1.9 m/s) on an in-ground 

treadmill (Collins et al., 2009) while we recorded 248-channel electroencephalography 

at 512 Hz (ActiveTwo, BioSemi, Amsterdam, The Netherlands). Concurrently, standard 

(80%) and target (20%) stimuli (vertical or 45° rotated black crosses on a white 

background, respectively) were displayed on a monitor placed at eye level about 1 m in 

front of the subjects. For each gait condition (standing, slower walking, faster walking, 

running) subjects performed an experimental block wherein they were asked to press a 

handheld button whenever the target stimulus appeared and a control block wherein no 

manual response to the target stimulus was required. Each data collection session 

began with the standing condition, followed by the other three conditions in random 

order. The standing blocks lasted 5 minutes each while the walking and running blocks 

lasted 10 minutes each. For the present study, data collected during running were not 

used due to the presence of large mechanical artifacts in the EEG signals. 

EEG Processing 

All processing and analysis was performed in Matlab (The Mathworks, Natick, MA) 

using scripts based on EEGLAB (sccn.ucsd.edu/eeglab), an open source environment for 

processing electrophysiological data (Delorme and Makeig, 2004).  

After data collection we high-pass filtered the EEG signals above 1 Hz. As in (Gwin et 

al., 2010a, b), EEG signals exhibiting substantial noise throughout the collection were 
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removed from the data in the flowing manner: 1) channels with std. dev. > 1000 µV 

were removed, 2) any channel whose kurtosis was more than 5 std. dev. from the mean 

was removed, and 3) channels that were uncorrelated (r < 0.4) with nearby channels for 

more than 1% of the time-samples were removed. Datasets containing fewer than 125 

channels after channel rejection were not included in this analysis (data for 7 subjects, 

all males, were retained). For each remaining subject, a subset of 125 channels was 

selected so that the electrodes were uniformly distributed across the scalp (due to 

channel rejection the electrode arrays differed slightly among subjects). Next, for each 

subject, a subset of 115 channels was selected from the 125 channel subset so that the 

electrode distribution remained maximally uniform. We continued this processes, 

selecting nested subsets of channels, until we had 11 EEG subsets per subject (125, 

115… 25 channels). For each subject and each channel subset, the channel signals were 

re-referenced to an average reference.  

We applied an adaptive mixture ICA algorithm [AMICA] (Palmer et al., 2006; Palmer 

et al., 2008) to each subset of EEG signals. ICA parses EEG signals into spatially static, 

maximally independent component processes (Makeig et al., 1996). Prior to performing 

ICA decomposition, time-periods of EEG with substantial artifact, as defined by z-

transformed power across all channels in a given time window being larger than 0.8, 

were rejected using EEGLAB. DIPFIT functions within EEGLAB  (Oostenveld and 

Oostendorp, 2002) computed an equivalent current dipole model that best explained 

the scalp topography of each IC using a boundary element head model based on the 
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Montreal Neurological Institute (MNI) template (the average of 152 MRI scans from 

healthy subjects,  available at www.mni.mcgill.ca).  

The datasets with 125 channels were considered to be benchmark datasets to which 

the reduced channel datasets (115, 105 … 25 channels) were compared. For this 

purpose, each of the 125 ICs for the 125-channel ICA decompositions were categorized 

as electrocortical activity, muscle activity, eye movement artifact, or noise in the 

following manner. First, if the projection of the equivalent current dipole model to the 

scalp accounted for less than 85% of the scalp topography variance the component was 

considered to be noise (scalp topography refers to a mapping of electrode coefficients 

for each IC onto a 2-dimensional head-map). Second, the scalp topography and time-

course of each IC was visually inspected to identify ICs that were reflective of eye 

movement artifact (Jung et al., 2000a).  Third, the remaining ICs were classified as 

electrocortical sources or muscle sources based on inspection of their power spectra 

and the locations of their equivalent current dipoles. 

Assessing changes in IC scalp projections 

To assess changes in the scalp topography of the ICs, as a function of the number of 

EEG channels used, the scalp topographies of ICs from the reduced channel datasets 

were interpolated at each EEG channel location in the 125-channel electrode montage. 

Next, for each subject, pairwise correlations were computed between IC scalp 

topographies for the 125-channel ICA decomposition and each of the reduced-channel 

ICA decompositions, using the Hungarian method. Only ICs representing electrocortical 

activity from the 125-channel dataset were considered. ICs were paired based on the 
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maximum absolute IC scalp topography correlation. In other words, ICs from the 

reduced-channel datasets were paired with ICs from the 125-channel dataset that had 

similar scalp topography, irrespective of polarity. Finally, IC pairs were sorted by 

absolute IC scalp topography correlation and averaged across subjects. We also 

computed the percentage of electrocortical and electromyographic sources that were 

retained for each reduced-channel dataset. The percentage of electrocortical sources 

retained was defined as the number of electrocortical sources in the 125-channel 

dataset that were correlated with a source in the reduced-channel dataset (r > 0.85); 

the percentage of electromyographic sources retained was similarly defined. 

Assessing changes in IC activations 

To assess changes in IC activation (i.e., timeseries) as a function of the number of 

channels used, pairwise correlations (for each subject) were computed between 125-

channel IC activations and reduced-channel IC activations, using the Hungarian method. 

Only ICs representing electrocortical activity from the 125-channel dataset were 

considered. ICs were paired based on the maximum correlation. In other words, ICs 

from the reduced-channel datasets were paired with ICs from the 125-channel dataset 

that had similar activations. Finally, IC pairs were sorted by IC activation correlation and 

averaged across subjects.   

Assessing changes in visual target discrimination electrocortical dynamics 

Previous analysis of a similar visual target discrimination task for seated subjects 

showed that brain processes projecting maximally to the frontal midline would 

contribute substantially to the event related potential (ERP), particularly to the post-
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motor positivity (Makeig et al., 2004). Prior visualizations of grand average IC-based 

ERPs from our dataset confirmed that mediofrontal ICs (projecting maximally to the 

frontal midline) had a clear and substantial stimulus-locked ERP (Gwin et al., 2010b).  

In this study, the IC that projected most strongly to the frontal midline for each 

subject was identified from the 125-channel IC decomposition by inspecting the scalp 

topographies. Next, the corresponding paired ICs from the reduced-channel datasets 

were identified. For each IC, signal epochs were extracted, time-locked from -200 to 800 

ms relative to visual stimulus onsets, using data from only the active walking conditions 

(i.e., the conditions in which subjects were walking and actively responding to the 

oddball stimuli by pressing a handheld trigger). A signal-to-noise ratio was computed for 

each trial as the peak magnitude in the range of 300 to 600 ms after the stimulus 

divided by the pre-stimulus standard deviation (Debener et al., 2007). For each subject 

and each dataset (i.e., the 125-channel dataset and the reduced-channel datasets) the 

mean signal-to-noise was computed. Analysis of variance was used to compare the 

grand mean signal-to-noise ratio across datasets.   

 

Results 

Of the 12 subjects who participated in this study, 7 had 125 or more EEG channels 

after rejection of noisy channels. For these subjects, 9.0 ± 1.3 electrocortical sources, 

10.9 ± 2.3 electromyographic sources, and 2.4 ± 1.6 electroocular sources, were 

identified for the 125-channel datasets (mean ± std. dev.). In general, the scalp 
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topographies for electrocortical sources were more distorted by reducing the number of 

EEG channels than the scalp topographies for electromyographic sources (Figure 4-1).  

 
Figure 4-1: Percentage of brain and muscle sources retained for the reduced-channel datasets. 

containing 115, 105 … 25 EEG channels.The percentage of electrocortical sources retained was 

defined as the number of electrocortical sources in the 125-channel dataset that were correlated 

with a source in the reduced-channel dataset (R > 0.85); the percentage of electromyographic 

sources retained was similarly defined 

 

The average correlation between electrocortical source scalp topographies for the 

reduced channel datasets (115, 100 … 25 channels) and the 125-channel dataset 

decreased from 0.90 ± 0.09 for the 115-channel dataset to 0.70 ± 0.14 for the 25-

channel dataset (mean ± std. dev.) (Figure 4-2).  Scalp topographies of four 

electrocortical sources, from an example subject, are shown for the 125-channel, 105-

channel … 25-channel datasets (Figure 4-3). The average correlation between 

electrocortical source activation for the reduced-channel datasets and the 125-channel 

dataset decreased from 0.86 ± 0.03 for the 115-channel dataset to 0.63 ± 0.04 for the 

25-channel dataset (Figure 4-4). The visual target discrimination ERP signal-to-noise 

ratio did not change significantly (P = 0.65) as a function of the number of channels 
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removed. The mean (std. dev.) signal-to-noise ratio across all subjects and all datasets 

was 3.08 (0.09). 

 

 
Figure 4-2: Correlation between reduced channel and 125-channel electrocortical scalp projections.  

A) Grand average absolute correlation between electrocortical source scalp projections for the reduced 

channel datasets and the 125-channel dataset (error-bars, 2 S.E.), and B) average absolute correlation 

between electrocortical source scalp projections for the reduced-channel datasets and the 125-channel 

dataset ordered by the magnitude of correlation; traces are color coded by the number of channels in 

the reduced-channel dataset. Data for the 7 best correlated sources are shown.  

 
 

 
 

Figure 4-3: Correlation between reduced channel and 125-channel electrocortical source activations.  

A) Grand average absolute correlation between electrocortical source temporal signals for the reduced 

channel datasets and the 125-channel dataset (error-bars, 2 S.E.), and B) average absolute correlation 

between electrocortical source temporal signals for the reduced-channel datasets and the 125-channel 

dataset ordered by the magnitude of correlation; traces are color coded by the number of channels in 

the reduced-channel dataset. Data for the 7 best correlated sources are shown.  
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Figure 4-4: Electrocortical scalp projections for an example subject 

from the (columns, left to right) 125-channel, 105-channel … 25-channel 

datasets, (rows) four electrocortical sources are shown for each dataset. 

Correlation values between the reduced-channel scalp projections and 

the 125-channel scalp projection are shown. 

 

Discussion 

This work demonstrates a distinct relationship between the number of EEG 

electrodes used and the quality of electrocortical source signals that can be parsed from 

scalp EEG, recorded during standing and walking, using ICA. By systematically reducing 

the number of channels used, we implemented a straightforward paradigm to assess 

how reducing the number of EEG channel signals affected the electrocortical source 

signal estimates derived from ICA. We evaluated the scalp topography (i.e., the 

electrode coefficients mapped to the scalp), the timeseries activation of the 

electrocortical signals, and the signal-to-noise ratio of an IC-based visual target 

discrimination ERP.  
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Correlations between scalp topographies from the benchmark (125-channel) dataset 

and the reduced-channel datasets fell off linearly with the number of channels used. 

The correlation between the electrocortical source activations also weakened as the 

number of channels used was reduced. Figure 4-4 demonstrates that small reductions in 

scalp topography correlation can lead to qualitatively different topographies.  

It is important not to over-interpret the spatial or the temporal performance results. 

These measures must be considered collectively. Topographical comparisons do not 

reflect the absolute contributions to the IC from each channel. For example, if a patch of 

EEG channels remained relatively silent (or absolutely zero) than any combination of 

weights for those electrodes would return (nearly) the same IC activation. In addition, 

temporal correlations, measured over the entire experimental time-course, may not 

reflect the true accuracy of the electrocortical source signal because events time-locked 

to cortical processes may be better reconstructed than the entire activation time series. 

Furthermore, the correlations evaluated here do not indicate whether causal 

relationships between various electrocortical sources are maintained as channels are 

reduced. 

Our results suggest that, for the concurrent locomotor and cognitive tasks studied 

here, the two most robust electrocortical sources can be well captured (temporal and 

spatial R2 > 0.9) using an electrode montage with as few as 35 channels. The anterior 

cingulate cortex source, which contributes strongly to the visual target discrimination 

ERP, is a robust component that was well captured by the reduced-channel IC 

decompositions. Therefore, it is not surprising that the signal-to-noise ratio of the IC-
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based ERP did not change significantly as the number of channels was reduced. This is 

an encouraging result for those interested in analyzing ERPs during mobile activities for 

BMI applications or for research purposes.  

Another consideration is that despite the use of a 256-channel EEG system on 

average only 125 channels were usable. Poor recordings in the other channels were due 

to large movement artifacts and/or degrading electrode-scalp connections, which likely 

resulted from forces on the electrode head cap from moving electrode wires. As sensor 

technologies improve (i.e., dry electrode sensors and wireless transmission) a higher 

percentage of electrodes will yield clean usable signals.  

An emerging field of study in neuroscience approaches the brain as a complex 

network of dynamic oscillators. ICA has already been utilized to formulate these 

network nodes for various analyses (Calhoun et al., 2008; Damoiseaux et al., 2008; 

Londei et al., 2007). The number of ICs extracted is of critical importance when studying 

brain activity with these methods. ICA can decode and anatomically locate sources of 

EEG activity; therefore, physiologically realistic maps can be generated when the density 

of anatomical nodes is sufficient. Therefore, while reducing the number of EEG channels 

may be sufficient for analysis of ERPs during mobile tasks, researchers interested in 

network analysis will likely want to maximize the number of EEG signals recorded. 

Another area in which ICA of EEG has proved useful is seizure detection and 

localization  (Nam et al., 2002). Seizures are often marked by large amounts of 

movement artifact that can pose similar challenges as locomotion to the interpretation 

of EEG recordings  (Urrestarazu et al., 2004). The use of ICA to remove movement 
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artifact from seizure EEG and to localize the anatomical source of seizure activity can be 

beneficial to this field. We can only speculate how the results of this study will transfer 

to seizure analysis. However, during seizure, the seizure-related EEG activity is dominant 

in the EEG channel signals. Therefore, just as the anterior cingulate source was well 

captured by the reduced-channel electrode montages in this study, seizure activity may 

be well captured with a reduced number of EEG sensors. We believe that applying the 

analysis approach presented in this study to seizure-related EEG would answer this 

question and, therefore, should be pursued.  

The results of this study are important because they provide useful information for 

researchers and developers who are interested in implementing MoBI. While additional 

EEG electrodes (at least up to 125 channels, as shown here) will improve the ICA 

decomposition, task specific placement of electrodes may bypass the need for added 

channels. For example, the cognitive state of a subject can be extracted from a few 

usable ICs, negating the benefit of additional channels (Patil and Turner, 2008; Sullivan 

et al., 2008). We plan to evaluate the relative effects of strategic placement of EEG 

electrodes in future work. 
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Abstract 

Electroencephalography (EEG) combined with independent component analysis 

enables functional neuroimaging in dynamic environments including during human 

locomotion. This type of functional neuroimaging could be a powerful tool for 

neurological rehabilitation. It could enable clinicians to monitor changes in motor 

control related cortical dynamics associated with a therapeutic intervention, and it 

could facilitate noninvasive electrocortical control of devices for assisting limb 

movement to stimulate activity dependent plasticity. Understanding the relationship 

between electrocortical dynamics and muscle activity will be helpful for incorporating 

EEG-based functional neuroimaging into clinical practice. The goal of this study was to 

use independent component analysis of high-density EEG to test whether we could 

relate electrocortical dynamics to lower limb muscle activation in a constrained motor 

task. A secondary goal was to assess the trial-by-trial consistency of the electrocortical 

dynamics by decoding the type of muscle action.  
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We recorded 264-channel EEG while 8 neurologically intact subjects performed 

isometric and isotonic, knee and ankle exercises at two different effort levels. Adaptive 

mixture independent component analysis (AMICA) parsed EEG into models of 

underlying source signals. We generated spectrograms for all electrocortical source 

signals and used a naïve Bayesian classifier to decode exercise type from trial-by-trial 

time-frequency data. 

AMICA captured different electrocortical source distributions for ankle and knee 

tasks. The fit of single-trial EEG to these models distinguished knee from ankle tasks 

with 80% accuracy. Electrocortical spectral modulations in the supplementary motor 

area were significantly different for isometric and isotonic tasks (p<0.05). Isometric 

contractions elicited an event related desynchronization (ERD) in the α-band (8-12 Hz) 

and β-band (12-30 Hz) at joint torque onset and offset. Isotonic contractions elicited a 

sustained α- and β-band ERD throughout the trial. Classifiers based on supplementary 

motor area sources achieved a 4-way classification accuracy of 69% while classifiers 

based on electrocortical sources in multiple brain regions achieved a 4-way classification 

accuracy of 87%.  

In conclusion, independent component analysis of EEG reveals unique spatial and 

spectro-temporal electrocortical properties for different lower limb motor tasks. Using a 

broad distribution of electrocortical signals may improve classification of human lower 

limb movements from single-trial EEG. 
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Introduction 

Functional neuroimaging could be a powerful tool for neurological rehabilitation. 

Being able to quantify how task specific brain activation is different in neurologically 

impaired patients compared to healthy individuals would inform clinical practice, would 

help clinicians choose a rehabilitation strategy with the best chance of success, and 

would facilitate tracking of brain plasticity during an intervention (Boyd et al., 2007; 

Weiller, 1998; Yang and Gorassini, 2006). In addition, functional neuroimaging may 

facilitate brain-based control of devices that assist limb movement and thus stimulate 

activity dependent plasticity (Daly and Wolpaw, 2008; Wang et al., 2010).   

Regaining the ability to walk after neurological injury is a fundamental rehabilitation 

goal that can vastly improve a patient’s lifestyle. This recovery is dependent on our 

ability to strengthen and modulate cortical inputs for lower limb motor control 

(Enzinger et al., 2009; Yang and Gorassini, 2006). In addition, the contribution of these 

cortical inputs, relative to spinal networks, is dependent on task specific body dynamics 

(Maegele et al., 2002). To get the most clinical benefit from functional neuroimaging 

during neurological rehabilitation, it is necessary to establish relationships between 

electrocortical dynamics and muscle activity in neurologically intact humans during a 

variety of lower limb motor tasks including individual muscle contractions, coordinated 

stepping, and locomotion.  

Electrical neuroimaging with electroencephalography (EEG) is the only non-invasive 

brain imaging modality that uses sensors that are light enough to wear while performing 

dynamic motor tasks and have sufficient time resolution to record changes in brain 
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activity on the timescale of natural human movements (Makeig et al., 2009). An 

alternate imaging technique that can be used during dynamic task performance is near-

infrared spectroscopy (NIRS). However, NIRS records cortical hemodynamics with a 

temporal resolution on the order of several seconds (Irani et al., 2007; Villringer and 

Chance, 1997) while EEG records electrocortical processes with a temporal resolution on 

the order of several ms (Michel et al., 2009). Due to these advantages, electrical 

neuroimaging is well suited for implementation in a clinical rehabilitation setting.  

To effectively study electrocortical dynamics using EEG it is necessary to implement 

signal processing techniques that parse electrocortical contributions to EEG signals from 

other contributing sources, such as electroocular, electrocardiographic, 

electromyographic, and movement artifacts. There are many approaches to this 

problem. Our preferred approach is independent component analysis (ICA). ICA is a 

blind source separation technique that optimizes a set of maximally independent source 

signals from linearly mixed recordings. When applied to EEG, ICA parses underlying 

electrocortical source signals from artifact contaminated electrical potentials on the 

scalp (Delorme et al., 2007; Jung et al., 2000a; Jung et al., 2000b; Makeig et al., 1996; 

Onton et al., 2006). An advantage of this approach is that electrocortical source signals 

are analyzed, as opposed to EEG channel signals that reflect the summed contribution of 

multiple electrocortical sources. In addition, we have recently demonstrated that ICA of 

EEG allows for functional neuroimaging during human locomotion (Gramann et al., 

2011a; Gwin et al., 2010a, b). Therefore, this technique can be used throughout the 

rehabilitation process as the patient progresses toward more dynamic, real world tasks.  
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In addition to monitoring cortical plasticity, another potential application of 

functional neuroimaging for neurological rehabilitation is brain-based control of devices 

that assist limb movement with the goal of stimulating activity dependent plasticity 

(Daly and Wolpaw, 2008; Wang et al., 2010).  ICA of EEG may be beneficial for these 

brain-machine interfaces (BMIs) (Hammon et al., 2008; Kachenoura et al., 2008). While 

early BMIs focused mainly on signals from primary motor cortex, there is an emerging 

consensus that a broad distribution of signals, and a better understanding of underlying 

cortical physiology, will improve the information transfer rate in these devices 

(Leuthardt et al., 2009). ICA identifies a broad distribution of electrocortical signals from 

scalp recordings. In addition, incorporating spatial, spectral, and temporal features of 

electrocortical signals, across multiple cortical areas, can improve the fidelity of 

classification algorithms (Besserve et al., 2011; Muller-Gerking et al., 1999; Qin et al., 

2004; Ramoser et al., 2000; Wentrup et al., 2005; Zhang et al., 2007). 

A common approach to the study of electrocortical source signals is to evaluate 

modulations in spectral power that are time-locked to an event of interest. One well 

established phenomenon is that oscillatory cortical activity in the α-band (8–12 Hz) and 

β-band (12–30 Hz) is suppressed during dynamic movements (Allen and MacKinnon, 

2010; MacKay, 2005; Pfurtscheller and Lopes da Silva, 1999). This phenomenon is 

referred to as event-related desynchronization (ERD) and has been studied extensively 

for upper limb movements and to a lesser degree for foot and toe movements (Muller-

Putz et al., 2007; Neuper et al., 2006; Pfurtscheller et al., 1997). Most studies evaluate 

ERD in EEG channel signals. Electrocorticography provides a more direct measure of the 
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underlying electrocortical sources, but electrocorticography is also affected by volume 

conduction of multiple electrocortical source signals (Whitmer et al.). ICA provides a 

means to evaluate spectral modulations in the underlying electrocortical processes 

themselves. In one study, ICA of EEG was shown to enhance the detection of the ERD 

associated with finger movements (Foffani et al., 2004). 

In this study, we used ICA of high-density EEG to examine electrocortical dynamics 

while 8 healthy subjects performed isometric and isotonic, knee and ankle, flexor and 

extensor muscle contractions at two different effort levels. The goals of this study were 

to characterize differences in spatial and spectro-temporal electrocortical dynamics 

associated with these muscle activations, as well as to assess the trial-by-trial (i.e., single 

exercise repetition) consistency of these differences by decoding the type of muscle 

activation from the recorded brain signals. Specifically, we tested 1) whether the fit of 

single-trial EEG to different ICA mixture models could distinguish knee from ankle 

contractions; 2) if muscle contraction related electrocortical spectral modulations in the 

motor cortex would differ between isometric and isotonic tasks, and between flexion 

and extension tasks; 3) if tasks requiring a greater muscular effort would elicit a more 

pronounced ERD; and 4) if muscle contraction type could be distinguished from single-

trial electrocortical spectrograms. 

Studying these electrocortical dynamics will provide a better understanding of 

lower limb motor control and may inform our interpretation of earlier results regarding 

electrocortical spectral modulations during human walking. The techniques that we 

have implemented in this study can be used throughout the rehabilitation process to 
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study both discrete lower limb muscle activations and more dynamic tasks, such as 

coordinated non-weight-bearing stepping or normal locomotion. Therefore, we believe 

that the results of this study may have implications for neurorehabilitation of gait, 

including monitoring cortical plasticity and providing real-time control of robotic lower 

limb exoskeletons. 

 

Methods 

Tasks 

Eight healthy volunteers with no history of major lower limb injury and no known 

neurological or musculoskeletal deficits completed this study (7 males; 1 female; age 

range 21–31 years). Subjects provided written informed consent prior to the 

experiment. The University of Michigan Internal Review Board approved all procedures, 

which complied with the standards defined in the Declaration of Helsinki. 

Subjects sat on a bench while performing isometric muscle activations (activation 

without limb movement) and isotonic movements (activation with limb movement, 

concentric followed by eccentric) of the knee and ankle joints (Figure 5-1). Subjects 

performed both flexion and extension; except for isotonic knee flexion, which could not 

be accommodated by the test apparatus. They completed two sets of 20 repetitions of 

each exercise. One set was performed at high effort and the second set was performed 

at low effort. For high effort isotonic exercises, we applied the following weights: 9.1 kg 

(20 lbs) on top of the knee for plantar flexion; 3.2 kg (7 lbs) on the dorsal surface of the 

foot for dorsiflexion; 9.1 kg (20 lbs) on the anterior shank just proximal to the ankle for 
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knee extension. For low effort isotonic exercises, we did not apply weight (movement 

was inhibited only by the mass of the limbs). For high effort isometric exercises, we 

instructed subjects to “press as hard as you can using only your leg, keep your arms and 

torso still, and don’t grab the exercise bench with your hands.” For low effort isometric 

exercises, we instructed subjects to “push approximately 25% as hard as you did for the 

high effort set.” Subjects were not given visual feedback of the force or torque they 

exerted. A few practice repetitions allowed subjects to acclimate to 25% effort.  

 
Figure 5-1: A sketch of the experimental setup for performing knee and ankle exercises. 

A) isometric knee extension, B) isometric knee flexion, C) isotonic knee extension, D) isometric 

ankle plantar flexion, E) isometric ankle dorsiflexion, F) isotonic ankle plantar flexion, and G) 

isotonic ankle dorsiflexion. For isometric exercises the direction of the applied force is indicated 

by a dashed arrow. For isotonic exercises the direction of movement is indicated by solid arrows. 
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Isometric and isotonic exercise repetitions were performed over roughly 3 seconds. 

For isotonic tasks the concentric and eccentric contractions were performed 

continuously (i.e., immediate direction change after the concentric contraction) and 

took a total of 3 seconds. Subjects paused for 5 seconds between repetitions. We did 

not provide timing cues because we did not want to confound electrocortical dynamics 

with an audio or visual task. As a result, exercise timing was approximate. Subjects 

performed isometric ankle exercises at a neutral ankle angle and isometric knee 

exercises at 45 degrees of flexion. All exercises were performed with the right lower 

limb only. We screened subjects for handedness, by asking them their preferred writing 

hand, and footedness, by asking which foot they would kick a ball with. All were right 

handed and right footed.  

Recording EEG and lower limb dynamics 

We recorded EEG at 512 Hz using an ActiveTwo amplifier and a 264-channel active 

electrode array (BioSemi, Amsterdam, The Netherlands). A digitizer (Polhemus, 

Colchester, VT, USA) localized the 256-channel EEG head cap, as well as 8 electrodes 

that were external to the head cap, with respect to anatomic head reference points 

(nasion, left preauricular point, and right preauricular point). After data collection, we 

applied a zero phase lag 1 Hz high-pass Butterworth filter to the EEG signals to remove 

drift. We removed EEG signals exhibiting substantial noise throughout the collection in a 

manner similar to (Gwin et al., 2010a, b). Channels with standard deviation ≥ 1000 μV 

were removed. Any channel whose kurtosis was more than 3 standard deviations from 

the mean was removed. Channels that were uncorrelated (r≤0.4) with nearby channels 
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for more than 0.1% of the time-samples were removed. On average, 191 channels were 

retained (range: 134–240; standard deviation: 34.6). The remaining channels were 

evenly distributed around the head; the mean (standard deviation) channel rejection 

rate was 72.4% (20.2%). The remaining channels were re-referenced to an average 

reference. We performed all processing and analysis in Matlab (The Mathworks, Natick, 

MA) using scripts based on EEGLAB (Delorme and Makeig, 2004), an open source Matlab 

toolbox for processing electrophysiological data. For isotonic exercises, we measured 

ankle and knee angles using electrogoniometers (Biometrics, Gwent, England). For 

isometric exercises, we measured force production using a load cell (Omegadyne, 

Sunbury, OH, USA). We sampled the load cell and electrogoniometers at 1000 Hz, and 

synchronized EEG and biomechanics signals offline. 

Adaptive Mixture Independent Component Analysis 

For each subject, we merged EEG signals from all conditions into a single dataset. 

We submitted these data to an adaptive mixture ICA algorithm [AMICA] (Palmer et al., 

2006; Palmer et al., 2008), which generalizes infomax (Bell and Sejnowski, 1995; Lee et 

al., 1999a) and multiple mixture (Lee et al., 1999b; Lewicki and Sejnowski, 2000) ICA 

approaches. AMICA is an open source plugin for EEGLAB that generates a 

predetermined number of mixture models each of which captures a competition 

selected subset of the data. Based on the known somatotopic distribution of the 

sensorimotor cortex (Kandel et al., 2000) we had an a priori hypothesis that ankle and 

knee muscle actions would elicit different electrocortical source spatial distributions. 

Therefore, we allowed AMICA to generate 2 mixture models. For each subject, we 
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separately computed model probabilities for the subset of data containing all ankle 

trials and the subset of data containing all knee trials. Model probability reflects the 

likelihood that a given model best fits a particular subset of data (on a scale of 0 to 1) 

and was computed based on the posterior log-likelihood using Matlab functions in the 

AMICA plugin for EEGLAB. Analysis of variance assessed whether the model probabilities 

were significantly different across all subjects.   

DIPFIT functions within EEGLAB computed an equivalent current dipole model that 

best explained the scalp topography of each independent component using a boundary 

element head model based on the Montreal Neurological Institute (MNI) template (the 

average of 152 MRI scans from healthy subjects, available at http://www.mni.mcgill.ca) 

(Oostenveld and Oostendorp, 2002). We aligned digitized electrode locations with the 

head model by scaling and rotating the head coordinate system so that the digitized 

anatomical reference points matched the head model anatomic reference points. We 

excluded independent components if the projection of the equivalent current dipole to 

the scalp accounted for less than 85% of the scalp map variance, or if the topography, 

time-course, and spectra of the independent component were reflective of eye 

movement or electromyographic artifact (Jung et al., 2000a; Jung et al., 2000b). The 

remaining independent components reflected electrocortical sources. These sources 

were clustered across subjects using EEGLAB routines that implemented k-means 

clustering on vectors coding differences in equivalent dipole locations and the 

topography of the dipole projection to the scalp. Scalp topography was reduced to 10 

principal dimensions using principal component analysis. To account for differences in 
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the dimensions of the dipole locations compared to the scalp topography, we gave 

dipole locations a weight of 3 and topography principle components a weight of 1 prior 

to clustering, as in (Gwin et al., 2010a, b). We retained clusters that contained 

electrocortical sources from at least 6 of 8 subjects; electrocortical sources that were 

not included in these clusters were excluded from all further analyses.  

Electrocortical Source Time-Frequency Analysis 

To test the hypothesis that different types of muscle activations have different 

electrocortical spectro-temporal features, we generated spectrograms for each 

electrocortical source, each muscle contraction, and each subject. We performed time-

frequency analysis using Morlet wavelets with 500 ms sliding windows and 25 ms of 

overlap. Frequencies were divided into 220 log spaced bins from 3 to 150 Hz. We time-

locked single-trial spectrograms to the start of each trial and then linearly time-warped 

them so that the end of the trial occurred at the same adjusted latency in each 

spectrogram. We determined the start and end of isometric trials based on the onset 

and offset of applied force (load cell measurements). We determined the start and end 

of isotonic trials based on the onset and offset of joint rotation (electrogoniometer 

measurements). We normalized each spectrogram by subtracting the average log 

spectrum for a pre-trial baseline (1000 ms to 500 ms prior to onset) from the 

spectrogram (this is a static baseline, each exercise repetition was preceded by a 5 

second pause). We then generated grand average normalized spectrograms in the α- 

and β-bands for electrocortical sources in the contralateral medial sensorimotor cortex 

for flexion, extension, isometric, and isotonic trials. We performed pairwise 
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comparisons of these spectrograms using a bootstrapping method available within 

EEGLAB (Delorme and Makeig, 2004). Finding no significant differences in these 

spectrograms for knee and ankle muscle trials or for flexion and extension trials, we 

averaged the spectrograms across these conditions yielding distinct grand average 

spectrograms for the following four conditions: isometric low effort, isometric high 

effort, isotonic low effort, and isotonic high effort. Significant fluctuations from baseline 

in these grand average spectrograms were identified using EEGLAB bootstrapping 

methods (Delorme and Makeig, 2004).  Last, within contraction type (i.e., isometric or 

isotonic) T-tests compared the means of the α- and β-band time-frequency points that 

exhibited a significant spectral change from baseline for low effort versus high effort 

trials.  

4-way Classification of Single Trial Electrocortical Source Spectrograms 

We evaluated two 4-way linear naïve Bayesian classifiers for grouping single trial 

data as isometric or isotonic and high or low effort. The first classifier was based only on 

the cluster of electrocortical sources in the supplementary motor area and the second 

classifier was based on all electrocortical sources except for those in the visual cortex. 

The second classifier was included to evaluate the extent to which the addition of 

electrocortical sources that were not in the supplementary motor area would improve 

the fidelity of the classification algorithm. For this classifier, electrocortical sources in 

the visual cortex were excluded for control purposes. Subjects were instructed not to 

look at the lower limb during testing but differences in eye gaze between conditions 

could have biased electrocortical dynamics in the visual cortex.  
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For both classifiers, feature vectors were generated by reducing the resolution of 

the normalized spectrograms by a factor of 10 (in both time and frequency) and 

identifying significant time-frequency points from the reduced resolution spectrograms 

across trials for each subject and each type of muscle activation. The decibel values at 

the time-frequency points that were significant across trials were selected in each trial 

and formed the single-trial feature vector. Next, we trained and tested subject specific 

linear naïve Bayesian classifiers (i.e., classifiers were trained and tested on single subject 

data) using the Matlab Statistics Toolbox. For each subject, a 10-fold cross validation 

was performed. The confusion matrices for each subject and each fold were then 

averaged to form a grand average confusion matrix for each classifier.  

 

Results 

Differences between the two AMICA model probabilities were significant for the 

subset of data for knee tasks and the 

subset of data for ankle tasks (p < 0.01). 

In other words, one model best 

explained the data during knee 

exercises and the other model best 

explained the data during ankle 

exercises (Figure 5-2).  

For clarity, these AMICA models are referred to as the knee model and the ankle 

model, respectively, for the remainder of this manuscript. However, it is critical to recall 

Figure 5-2: AMICA model probabilities for 

ankle trials (left) and knee trials (right).  

Error bars show 1 SD. * p< 0.01. 
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that these models were trained on the entire dataset without knowledge of the 

underlying muscles being activated. On a trial-by-trial basis, the fit of the recorded EEG 

to the AMICA mixture models distinguished knee contractions from ankle contractions 

with 80% accuracy. 

The knee and ankle ICA mixture models parsed an average of 23.8 and 21.8 

electrocortical sources from the EEG signals, respectively. The number of sources per 

subject was not significantly different between the two models (ANOVA, p = 0.66). 

Clusters containing electrocortical sources from at least 6 of 8 subjects were localized to 

the anterior cingulate, posterior cingulate, supplementary motor, left dorsal premotor, 

right dorsal premotor, posterior parietal, and visual cortex. All of these clusters were 

present in both the knee and ankle ICA models (Figure 5-3). Talairach coordinates for 

the cluster centroids are shown in Table 5-1. 

Table 5-1: Talairach coordinates for the geometric cluster centroids.  

The cluster numbers correspond to the numeric labels in Figure 5-3. 

 
1 

Determined using the freely downloadable Talairach Client (www.talairach.org) (Lancaster et al., 2000)  
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Figure 5-3: Clusters of electrocortical source equivalent current dipoles for knee and ankle exercises. 

Clusters were localized to the (1: orange) supplementary motor area, (2: purple) left dorsal premotor 

area, (3: magenta) right dorsal premotor area, (4: blue) posterior cingulate, (5: yellow) posterior 

parietal, (6: brown) anterior cingulate, and (7: green) visual cortex. Two dipole models are shown; (top) 

the model best fitting the EEG signals during ankle exercises and (bottom) knee exercises. Small spheres 

indicate dipole locations for single electrocortical sources for single subjects; larger spheres indicate 

geometric cluster centroids. 

 
Isometric and isotonic contractions elicited significantly different α- and β-band 

spectral power modulations for the cluster of electrocortical sources in the 

supplementary motor area (cluster 1: orange in Figure 5-3). Specifically, isometric 

contractions elicited α- and β-band ERD at trial onset and offset while isotonic 

contractions elicited a sustained α- and β-band ERD throughout the trial (Figure 5-4). 

Finding no significant differences in these spectrograms for knee and ankle muscle trials 

or for flexion and extension trials, we averaged the spectrograms across these 

conditions. For both isometric and isotonic contractions, high effort tasks elicited a 

slightly but significantly (p < 0.01, power > 0.99) more pronounced ERD (Figure 5-5). 
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Figure 5-4: Grand average spectrograms for supplementary motor area electrocortical sources  

showing average changes in spectral power during the task relative to a pre-trial baseline for 

isometric (left) versus isotonic (middle) trials. The right panel shows the difference between 

isometric and isotonic conditions. The horizontal axis begins 1 s prior to trial onset (To; first black 

vertical line) and ends 1 s after trial offset (Tf; second black vertical line). The times between the 

onset and offset of the trials were warped to align these latencies across all trials. Non-

significant changes from baseline (p > 0.05) were set to 0 dB (green). 

 
 

We evaluated two 4-way linear naïve Bayesian classifiers for grouping single trial 

data as isometric or isotonic and high or low effort. Finding no significant differences in 

the spectrograms for flexion and 

extension we did not attempt to 

decode these conditions. The first 

classifier was based on 

electrocortical sources in the 

supplementary motor area 

(cluster 1: orange in Figure 5-3), 

and the second classifier was 

based on all electrocortical 

sources except for those in the 

visual cortex.  

Figure 5-5: Average event-related desynchronization 

for high effort and low effort muscle contractions  

shown separately for isometric (left) and isotonic 

(right) conditions. Error bars show 1 SD. * p< 0.01. 
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Grand average spectrograms for each cluster of electrocortical sources used in the 

second classifier are shown in Figure 5-6. Spectrograms for the anterior cingulate cortex 

are excluded because no significant differences from baseline were found for this 

cluster. The accuracies of these classifiers were 68.8 ± 9.3% and 87.1 ± 9.0% (mean ± 

SD), respectively. The grand average normalized confusion matrices, averaged across 10 

folds and 8 subjects, are shown in Table 5-2 and Table 5-3, respectively.  

 

Table 5-2: Grand average normalized confusion matrix for the 4-way linear naïve Bayesian classifier 

using electrocortical sources in the supplementary motor area. 

 
 
 
 

Table 5-3: Grand average normalized confusion matrix for the 4-way linear naïve Bayesian classifier 

using all electrocortical sources except those in the visual cortex. 
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Figure 5-6: Grand average normalized spectrograms for clusters of electrocortical sources. 

(Top row) supplementary motor area, (second row) left dorsal premotor cortex, (third row) right 

dorsal premotor cortex, (fourth row) posterior cingulate, and (fifth row) posterior parietal cortex 

showing average changes in spectral power during the task relative to a -1000 ms to -500 ms 

baseline for isometric (left) and isotonic (right) trials. The color of the border and the numeric 

label for each row corresponds to the color and numeric label of the dipoles for the 

corresponding cluster shown in Figure 3. The horizontal axis begins 1 s prior to trial onset (To; 

first black vertical line) and ends 1 s after trial offset (Tf; second black vertical line). The times 

between the onset and offset of the trials were warped to align these latencies across all trials. 

Non-significant changes from baseline (p > 0.05) were set to 0 dB (green). 

 
Discussion 

We used high-density EEG to study voluntary lower limb isometric and isotonic, 

ankle and knee, flexor and extensor muscle contractions in eight healthy subjects. The 

goals of this study were to characterize differences in electrocortical dynamics between 

these muscle actions and to assess the trial-by-trial consistency of these differences by 

decoding the type of muscle action from recorded brain signals.  



 86 

For all subjects, AMICA captured different spatial distributions of electrocortical 

sources for ankle and knee actions. The somatotopic arrangement of the sensory and 

motor cortices is well established (Kandel et al., 2000). Therefore, from a physiological 

perspective it is not surprising that knee and ankle muscle actions would elicit different 

distributions of underlying electrocortical sources. The supplementary motor area 

(cluster 1: orange in Figure 5-3) is of particular interest because this region of the 

premotor cortex projects to distal limb motor nuclei while the dorsal premotor area 

(clusters 2 and 3: purple and magenta in Figure 5-3) projects mainly to motor nuclei 

innervation the proximal limb musculature (Krakauer and Ghez, 2000). The location of 

face, hand, and foot areas of the human supplementary motor area follow an anterior-

posterior shift (Chainay et al., 2004). Therefore, the posterior shift of the supplementary 

motor area ankle cluster compared to the knee cluster is consistent with expected 

somatotopy; though supplementary motor area somatotopy has not been formalized to 

the extent that primary motor cortex somatotopy has been. However, we do not believe 

that the data collected here provides a sufficient basis for a physiological explanation for 

the subtle location shift of this cluster between the two models. Future work should 

evaluate the use of subject specific head models (derived from individual magnetic 

resonance images) to improve the accuracy of source localization. Nevertheless, AMICA 

provides a novel data driven way to derive distinct source distributions. In this study, we 

could have separated the ankle and knee data a priori and submitted these data to two 

distinct ICA decompositions. The benefit of AMICA is that a priori knowledge of different 

source distributions is not required. For this reason we choose to evaluate AMICA in this 
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study. Our results suggest that AMICA of high-density EEG has sufficient spatial 

resolution to distinguish electrocortical process for knee tasks from those for ankle 

tasks.  

We used the fit of single-trial EEG to the AMICA mixture models to distinguish knee 

from ankle tasks with modest success. Isometric knee exercises could be distinguished 

from isometric ankle exercises with 91% accuracy, but isotonic exercises could only be 

distinguished with 62% accuracy. For some subjects (3 of 8), 100% accuracy was 

achieved for both isometric and isotonic exercises. For other subjects, isometric 

exercises were accurately categorized but isotonic exercises were not. We expect that 

for these subjects, the isotonic exercises elicited a distribution of electrocortical activity 

that was different from that elicited by the isometric exercises. It might be helpful for 

future studies to allow the AMICA algorithm to identify additional mixture models, but 

this might require larger data sets. In fact, this observation highlights an important 

benefit of the AMICA algorithm   

Spectrograms for electrocortical sources in the supplementary motor area differed 

between isometric and isotonic contractions, but did not differ significantly between 

flexion and extension trials. Specifically, isometric contractions elicited an ERD in the α- 

and β-band at force onset and offset while isotonic contractions elicited a sustained α- 

and β-band ERD throughout the trial. In addition, high effort trials (i.e., greater muscle 

activation) elicited a slightly but significantly more pronounced desynchronization than 

low effort trials. This result is consistent with the understanding that oscillatory cortical 

activity in the α- and β-bands reflects steady-state sensorimotor processing that is 
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reduced during dynamic movement (Allen and MacKinnon, 2010; MacKay, 2005; 

Pfurtscheller and Lopes da Silva, 1999). Regarding the ERD during isometric contractions 

at onset and offset, it is important to note that the onset of an isometric contraction 

consists of dynamic muscle shortening and tendon lengthening until the desired level of 

force is achieved, and the offset of an isometric contraction consists of muscle 

lengthening and tendon shortening until rest is achieved (Fukunaga et al., 2002). In 

addition, some limb movement is inevitable as the test apparatus and the soft tissues of 

the lower limb becomes loaded and then unloaded at the onset and offset of each trial.  

To our knowledge this is the first comparison of electrocortical dynamics associated 

with isometric and isotonic lower limb muscle activations. 

Several observations can be made from the electrocortical cluster spectrograms 

shown in Figure 5-6. First, while the α-band ERD for isometric trials occurred only at trial 

onset and offset for the supplementary motor area cluster (first row of Figure 5-6), the 

α-band ERD was persistent throughout the isometric trials for the dorsal premotor area 

clusters that were located more laterally in the premotor cortex (second and third row 

of Figure 5-6, respectively). This may be the result of dynamic torso stabilization 

throughout the trial. Second, significant ERD for the supplementary motor area cluster 

preceded trial onset by roughly 400 ms but significant ERD for all other electrocortical 

source clusters did not begin until after trial onset. Third, the supplementary motor area 

ERD was β-dominant for both the isometric and isotonic conditions; whereas the dorsal 

premotor clusters were α-dominant for the isometric condition and β-dominant for the 

isotonic conditions. Most importantly, electrocortical spectrograms in broadly 
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distributed brain regions contained information regarding the level of effort and the 

contraction type (isometric versus isotonic). This is evidenced by the fact that classifiers 

based only on supplementary motor area electrocortical sources achieved a 4-way 

classification accuracy of 69% while classifiers based on electrocortical sources in 

multiple brain regions achieved a 4-way classification accuracy of 87%. This findings 

supports the notion that a broad distribution of  electrocortical signals will improve the 

information transfer rate in BMIs (Leuthardt et al., 2009). 

In this study we used ICA to parse EEG signals recorded on the scalp into underlying 

electrocortical source signals and then evaluated the spectro-temporal characteristics of 

the source signals. However, this is certainly not the only way to study electrocortical 

dynamics associated with limb movements. Many informative findings have come from 

time-domain measures, such as motor-related cortical potentials (MRCPs). MRCPs have 

been shown to be greater and occur earlier for eccentric elbow contractions than for 

concentric contractions (Fang et al., 2001). In addition, MRCP amplitude has been 

shown to scale with the amount of torque produced (Siemionow et al., 2000) and to 

decrease with fatigue (Liu et al., 2005). In addition, coherence analysis of EEG and EMG 

could provide additional insight. In particular, such analysis could be used to localize 

active brain regions for knee and ankle tasks.  

There are certain limitations of this study. First, it is possible that certain sources of 

electromyographic or electroocular artifact were present during ankle and not knee 

trials (or vice versa), even after removing artifacts using ICA. This would have positively 

influenced the prediction of knee vs. ankle action. To avoid this, subjects were seated in 
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the same position for all experimental conditions and were instructed to keep their gaze 

forward. In addition, they were instructed to engage only the right leg during each 

exercise (i.e., subjects were not permitted to grab the exercise bench to generate more 

force). Second, the exercises that were categorized as isotonic in this study are not truly 

isotonic (joint torque was not constant throughout the trial), and this could confound 

the interpretation of the data. Third, the methods of classification used in this study 

cannot be used for real-time classification. ICA mixture models were trained offline. It 

remains to be seen whether ICA mixture models are stable from day-to-day, in the 

presence of unavoidable differences in EEG head-cap setup. If the mixture models are 

stable from day-to-day then subject specific mixture models could be applied in real-

time. In addition, classification of muscle contraction type was based on time-frequency 

data for the full (approximately 3 second) repetition. Real-time classification would 

require the use of a shorter duration of EEG activity. However, the purpose of decoding 

single-trial spectrograms in this study was to assess the trial-by-trial consistency of the 

task specific differences in the electrocortical spectrograms. 

The results of this study demonstrate that ICA of high-density EEG can be used to 

monitor a broad distribution of electrocortical sources that contribute to lower limb 

muscle actions. In an earlier study we used a similar imaging technique during human 

locomotion and found spectral modulations in sensorimotor, anterior cingulate, and 

posterior parietal cortex that were locked to the gait cycle (Gwin et al., 2010a). It 

remains to be seen how these task specific electrocortical dynamics are affected by 

neurological injuries, such as stroke or spinal cord injury, or how they change in 
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response to motor rehabilitation. However, alternative imaging techniques suggest that 

functional recovery will rely on plasticity in multiple cortical regions and that the relative 

contribution of different regions will change throughout the course of rehabilitation 

(Eliassen et al., 2008; Enzinger et al., 2009; Kokotilo et al., 2009a; Kokotilo et al., 2009b; 

Miyai et al., 2006; Nishimura and Isa, In Press). The techniques used in this study may 

provide a means to better understand the cortical physiology underlying neurological 

rehabilitation and recovery.   

Our results demonstrate that different types of lower limb muscle activation carry 

unique spatial and spectro-temporal electrocortical signatures, and that a broad 

distribution of electrocortical signals may improve classification of human lower limb 

movements from single-trial EEG data. Our findings may have implications for tracking 

cortical plasticity during neurorehabilitation. Specifically, the techniques presented here 

could be used to track changes in spectro-temporal and spatial properties of motor-

related electrocortical signals during recovery. This could help researchers and clinicians 

gauge the success of a therapy or pharmaceutical treatment.  
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Abstract 

Coherence between electroencephalography (EEG) recorded on the scalp above the 

motor cortex and electromyography (EMG) recorded on the skin of the limbs is thought 

to reflect corticospinal coupling between motor cortex and muscle motor units. Beta-

range (13-30 Hz) corticomuscular coherence has been extensively documented during 

static force output while gamma-range (31-45 Hz) coherence has been linked to 

dynamic force output. However, the explanation for this beta-to-gamma coherence shift 

remains unclear. We recorded 264-channel EEG and 8-channel lower limb 

electromyography (EMG) while 8 healthy subjects performed isometric and isotonic, 

knee and ankle exercises. Adaptive mixture independent component analysis (AMICA) 

parsed EEG into models of underlying source signals. We computed magnitude squared 

coherence between electrocortical source signals and EMG. Significant coherence 

between contralateral motor cortex electrocortical signals and lower limb EMG was 

observed in the beta- and gamma-range for all exercise types. Gamma-range coherence 

was significantly greater for isotonic exercises than for isometric exercises. We conclude 

that active muscle movement modulates the speed of corticospinal oscillations. 

Specifically, isotonic contractions shift corticospinal oscillations towards the gamma-
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range while isometric contractions favor beta-range oscillations. Prior research has 

suggested that tasks requiring increased integration of visual and somatosensory 

information may shift corticomuscular coherence to the gamma-range. The isometric 

and isotonic tasks studied here likely required similar amounts of visual and 

somatosensory integration. This suggests that muscle dynamics, including the amount 

and type of proprioception, may play a role in the beta-to-gamma shift. 

Introduction 

Coherence is a commonly used statistic to estimate the causality between the input 

and output of a linear system. Coherence between electroencephalography (EEG) 

recorded on the scalp above the motor cortex and electromyography (EMG) recorded 

on the skin over muscles is thought to reflect corticospinal coupling between motor 

cortex and pooled motor units (Mima and Hallett, 1999; Negro and Farina, 2011). 

Corticomuscular coherence phase lags are consistent with the conduction time between 

the motor cortex and the respective muscle. This suggests that the motor cortex drives 

the motorneuron pool (Gross et al., 2000).  

Studies of corticomuscular (EEG-EMG) coherence have largely focused on the upper 

limbs (Chakarov et al., 2009; Halliday et al., 1998; Kristeva-Feige et al., 2002; Kristeva et 

al., 2007; Mima et al., 2000; Omlor et al., 2007; Yang et al., 2009). The prevalence of 

monosynaptic corticospinal projections to the motor units of the upper limbs, and the 

hand in particular, contributes to the dexterity of the upper limbs compared to the 

lower limbs (Krakauer and Ghez, 2000). There have been a few studies investigating 

EEG-EMG coherence for lower limbs muscles (Hansen et al., 2002; Mima et al., 2000; 
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Raethjen et al., 2008; Vecchio et al., 2008). For both the upper and lower limbs, the 

existence of these causal descending signals reflects motor cortex control of voluntary 

movements via pyramidal pathways (Gross et al., 2000; Mima and Hallett, 1999; Negro 

and Farina, 2011). 

The type of motor task affects the frequency band where corticomuscular 

coherence is most prominent. Beta-range (13-30 Hz) corticomuscular coherence 

measured using EEG has been extensively documented during static force output 

(Chakarov et al., 2009; Gross et al., 2000; Kristeva-Feige et al., 2002; Kristeva et al., 

2007; Mima et al., 2000; Raethjen et al., 2008; Yang et al., 2009). Gamma-range (31-45 

Hz) corticomuscular coherence has been studied to a lesser extent but has been linked 

to dynamic force output (Marsden et al., 2000; Omlor et al., 2007). Marsden et al. 

recorded electrocorticographic (ECoG) signals from non-pathological areas in humans 

with subdural electrodes in place for investigation of epilepsy. There was coherence 

between ECoG and simultaneously recorded EMG from upper limb muscles in the beta-

range for isometric contractions and in the gamma-range for self-paced phasic 

contractions. Omlor et al. evaluated EEG–EMG coherence during constant and 

periodically modulated force production in a visuomotor task (i.e., tracking a sinusoidal 

force given visual force feedback). In both tasks, subjects attempted to achieve a target 

force given real-time visual feedback of force production. For the constant force 

condition, EEG-EMG coherence existed in the beta-range. For the periodically 

modulated force condition, the EEG-EMG coherence shifted toward higher (gamma-

range) frequencies.  
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A complete explanation for the beta-to-gamma corticomuscular coherence shift for 

static versus dynamic tasks is lacking. Omlor et al. hypothesized that the shift toward 

higher frequencies for the dynamic force tracking task compared to the constant force 

task reflected that tracking a periodically modulated force requires more attentional 

resources and more complex integration of visual and somatosensory information than 

the constant force task. They suggested that higher frequency coherence might reflect 

the integration of multi-sensory information into the motor plan. However, Marsden et 

al. observed a beta-to-gamma shift for a self-timed task without visual feedback.  

The purpose of the present study was to compare corticomuscular coherence for 

isometric and isotonic contractions when both contraction types were self-paced and in 

the absence of external force feedback. We hypothesized that despite similar visual and 

sensory motor integration demands for both tasks the isotonic contractions would elicit 

gamma-range corticomuscular coherence while the isometric contractions would elicit 

beta-range coherence. We based this hypothesis on the observation from Marsden et 

al. that self-paced phasic contractions shifted corticomuscular coherence to the gamma-

range in the absence of visuomotor coordination. A novel aspect of our study is that we 

used independent components analysis (Delorme et al., 2012; Jung et al., 2000a; Makeig 

et al., 1996; Onton et al., 2006) to parse underlying electrocortical sources from mixed 

signals recorded on the scalp, rather than directly using EEG electrode signals for 

calculating corticomuscular coherence. 
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Methods 

Data Collections 

The experimental apparatus, testing protocol, and data collection procedures have 

been described previously (Gwin and Ferris, [In Press]) and are briefly summarized here. 

The subjects of this study were eight healthy right-handed and right-footed volunteers 

with no history of major lower limb injury and no known neurological or 

musculoskeletal deficits (7 males; 1 female; age range 21–31 years). These subjects sat 

on a bench while performing isometric muscle activations and isotonic movements 

(concentric followed by eccentric) of the right knee and right ankle joints. Exercise 

repetitions took approximately 3 seconds. For isotonic tasks concentric and eccentric 

contractions were performed continuously (i.e., immediate direction change after the 

concentric contraction). Subjects paused for 5 seconds between repetitions. We did not 

provide timing cues because we did not want to confound electrocortical dynamics with 

an audio or visual task. As a result, exercise timing was approximate. 

We recorded 512 Hz EEG using an ActiveTwo amplifier and a 264-channel active 

electrode array (BioSemi, Amsterdam, The Netherlands). We recorded lower limb EMG 

at 1000 Hz (tibialis anterior, soleus, vastus lateralis, vastus medialus, medial 

gastrocnemius, lateral gastrocnemius, medial hamstring, and rectus femoris) using 8 

surface EMG sensors and a K800 amplifier (Biometrics, Gwent, England), as well as a 

Vicon data acquisition system (Vicon, Los Angeles, US). The University of Michigan 

Internal Review Board approved all procedures, which complied with the standards 

defined in the Declaration of Helsinki. 
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EEG and EMG pre-processing 

EEG was pre-processed in the same manner as (Gwin and Ferris, [In Press]) using 

Matlab (The Mathworks, Natick, MA) scripts based on EEGLAB, an open source 

environment for processing electrophysiological data (Delorme and Makeig, 2004). We 

applied a zero phase lag 1 Hz high-pass Butterworth filter to the EEG signals to remove 

drift. Next, we removed EEG signals exhibiting substantial noise throughout the 

collection; the channel rejection criteria were standard deviation greater than 1000 μV, 

kurtosis more than 3 standard deviations from the mean of all channels, or correlation 

coefficient with nearby channels less than 0.4 for more than 0.1% of the time-samples. 

The remaining channels were average referenced (191 ± 34.6 channels, mean ± 

standard deviation). For each subject, we submitted these channel signals to a 2-model 

adaptive mixture independent component analysis (AMICA) (Delorme et al., 2012; 

Palmer et al., 2006; Palmer et al., 2008). We have previously demonstrated that 

applying a 2-model AMICA decomposition to these data captures differences in the 

electrocortical source distribution for knee versus ankle exercises (Gwin and Ferris, 

2011; Gwin and Ferris, [In Press]). DIPFIT functions (Oostenveld and Oostendorp, 2002)  

within EEGLAB computed an equivalent current dipole model that best explained the 

scalp topography of each independent component using a boundary element head 

model based on the Montreal Neurological Institute (MNI) template. We excluded 

independent components if the projection of the equivalent current dipole to the scalp 

accounted for less than 85% of the scalp map variance, or if the topography, time-

course, and spectra of the independent component were reflective of eye movement or 
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electromyographic artifact (Jung et al., 2000a; Jung et al., 2000b). The remaining 

independent components reflected electrocortical sources. EEGLAB clustered 

electrocortical sources across subjects based on the equivalent current dipole models of 

the sources. We retained clusters that contained electrocortical sources from at least 6 

of 8 subjects; the geometric means of these clusters were in the contralateral motor (2 

clusters), ipsilateral motor, anterior cingulate, posterior cingulate, and parietal cortex 

(Gwin and Ferris, 2011; Gwin and Ferris, [In Press]). Electrocortical sources that were 

not included in these clusters were excluded from all further analyses. EMG signals were 

re-sampled at 512 Hz (the EEG sampling rate) using the Matlab resample function and 

then full-wave rectified. Full wave rectified surface EMG mimics the temporal pattern of 

grouped firing motor units (Halliday et al., 1995). The onset and offset of each exercise 

repetition were determined based on the onset and offset of applied force (Omegadyne 

load cell, Sunbury, OH, USA) for isometric exercises and joint rotation (Biometrics 

electrogoniometer, Gwent, England) for isotonic exercises. 

Corticomuscular coherence 

For each exercise set (i.e., 20 repetitions) the power spectra of rectified EMG, EEG, 

and electrocortical source signals were computed using Welch’s method with 0.5 s non-

overlapping Hanning windows (for a frequency resolution of 2 Hz). Only active data (i.e., 

between onset and offset of each exercise repetition) were used for power spectral 

estimation. Magnitude squared coherence was computed as follows for each EEG 

channel / EMG channel pair and for each electrocortical source / EMG channel pair:  
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where       and       are the auto-spectra of each signal; and       is the cross-spectra. 

Coherence was only computed for agonist muscles (i.e., for flexion exercises coherence 

was computed for tibialis anterior and medial hamstring, and for extension exercises 

coherence was computed for soleus, medial gastrocnemius, lateral gastrocnemius, 

vastus lateralis, vastus medialus, and rectus femorus). Coherence was considered to be 

significant if it was greater than the 95% confidence limit (CL), which was computed as 

follows (Rosenberg et al., 1989):  

         
 
     

where   is the number of windows used for spectral estimation. In this study the 

number of windows was not the same for all spectral estimates because exercises were 

self-paced. Therefore, coherence values were linearly warped so that the 95% CL was 

the same for all coherence estimates.   

Coherence scalp-maps visualizing the maximum EEG-EMG coherence in the mu-

range (8-12 Hz), beta-range (13-30 Hz), and gamma-range (31-45 Hz) for each EEG 

channel / EMG channel pair were computed for each subject and exercise set. Grand 

average coherence scalp-maps were generated for isometric and isotonic exercises by 

first interpolating subject specific coherence maps to a standardized 64-channel 

electrode array (using spherical interpolation implemented in EEGLAB) and then 

averaging interpolated coherence maps across subjects. Interpolation to a standardized 
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64-channel electrode array was necessary because after EEG-channel rejection the 

electrode montages were not consistent across subjects.  

Peak coherence in the beta- and gamma-range was computed for each 

electrocortical source / EMG channel pair. Student’s t-tests were used to assess the 

significance of differences in grand average coherence peaks for isometric versus 

isotonic exercises. The significance criteria was set at α = 0.05 a priori and Bonferroni 

correction was used to address the problem of multiple comparisons. 

Results 

Significant coherence between EEG-channel signals and lower limb EMG was 

observed in the beta- and gamma-range, but not in the mu-range, for all exercise types 

(Figure 6-1). Beta-range coherence for isometric exercises was broadly and bilaterally 

distributed over the medial sensorimotor cortex and favored the contralateral side (left 

column, middle row, Figure 6-1). Beta-range coherence for isotonic exercises was 

distributed less broadly and was significant only over the contralateral sensorimotor 

cortex (right column, middle row, Figure 6-1). Gamma-range coherence for isometric 

exercises was distributed narrowly over the medial motor cortex (left column, bottom 

row, Figure 6-1). Gamma-range coherence for isotonic exercises was distribute more 

broadly and favored the contralateral side (right column, bottom row, Figure 6-1). 
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Figure 6-1: Grand average mu-range, beta-range, and gamma-range EEG-EMG coherence scalp-maps 

for (left) isometric and right (isotonic) exercises. 95% coherence confidence limit = 0.025. 

 
Beta- and gamma-range coherence between contralateral motor cortex 

electrocortical source signals and lower-limb EMG was significant for all exercise types 

(Figure 6-2).  In the gamma-range, coherence for isotonic exercises was significantly 

greater (p < 0.05) than coherence for isometric exercises. These coherence values are 

separated by muscle in Figure 6-3. The trend of increased gamma-range coherence for 

isotonic compared to isometric exercise was consistent across all muscles except vastus 

medialus and lateral gastrocnemius, which did not exhibit significant coherence for 

either condition. Anterior cingulate, posterior cingulate, posterior parietal, and 

ipsilateral sensorimotor electrocortical source signals did not exhibit significant 

coherence with EMG.  
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Figure 6-2: Grand average peak coherence between EMG and electrocortical source signals 

in the (A) beta-range and (B) gamma-range for (dark grey) isometric and (light grey) isotonic exercises. 

The 95% coherence confidence limit is indicated with a dashed grey line. Error bars show standard error 

of the mean. * indicates a significant difference between isometric and isotonic conditions (p < 0.05). 

 
 

 

Figure 6-3: Grand average peak coherence for contralateral motor cortex electrocortical source signals  

in the (A) beta-range and (B) gamma-range for isometric and isotonic exercises. Colored bars represent 

(TA) tibialis anterior, (LG) lateral gastrocnemius, (MG) medial gastrocnemius, (SO) soleus, (MH) medial 

hamstring, (VL) vastus lateralis, (VM) vastus medialus, and (RF) rectus femoris muscles. The 95% 

coherence confidence limit is indicated with a dashed grey line. Error bars show the standard error of 

the mean. Isotonic knee flexion could not be accommodated by the test apparatus; therefore, no values 

are shown for isotonic MH coherence.   

Discussion 

We found that both isometric and isotonic, knee and ankle exercises elicited 

significant coherence between contralateral motor cortex electrocortical signals and 

lower limb EMG in the beta- and gamma-range. Gamma-range coherence was 

significantly greater for isotonic exercises than for isometric exercises. This finding is 

consistent with prior research using ECoG to study corticomuscular coherence during 
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tonic and phasic contractions (Marsden et al., 2000) and suggests that muscle dynamics 

and relative changes in proprioception may play a role in the beta-to-gamma shift of 

coherent frequencies for static versus dynamic force production.  

Gamma-range corticomuscular coherence has also been observed using scalp EEG 

during an isometric force tracking task when subjects attempted to achieve a 

periodically modulated target force given real-time visual feedback of force production 

(Omlor et al., 2007). The authors of that study hypothesized that the shift toward higher 

(gamma-range) frequencies might have reflected the fact that tracking a periodically 

modulated force requires more attentional resources and more complex integration of 

visual and somatosensory information for control than tracking a constant force. We 

observed a similar beta-to-gamma shift but the isotonic task studied here did not 

require more visuomotor integration than the isometric task. Despite the fact that the 

external anatomy remains stationary, isometric force increases involve dynamic muscle 

shortening and tendon lengthening while isometric force decreases involve muscle 

lengthening and tendon shortening (Fukunaga et al., 2002). Therefore, the beta-to-

gamma shift observed here may not be inconsistent with the beta-to-gamma shift for 

the periodically modulated isometric force production task used by Omlor et al. (2007).  

Our findings of corticomuscular coherence were consistent across most of the 

lower limb muscles. We recorded EMG from tibialis anterior, soleus, vastus lateralis, 

vastus medialus, medial gastrocnemius, lateral gastrocnemius, medial hamstring, and 

rectus femoris muscles. We found that the beta-to-gamma coherence frequency shift 

was consistent across all muscles (i.e., isotonic contractions elicited greater gamma-
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range coherence than isometric contractions) except vastus medialus and lateral 

gastrocnemius, which did not exhibit significant coherence for either condition. This 

observation is consistent with a common pyramidal pathway activating multiple 

coordinated muscles via spinal interneurons to achieve coordinated limb movement at a 

lower computational cost (Krakauer and Ghez, 2000; Ting and McKay, 2007). 

Most EEG-based studies of corticomuscular coherence evaluate coherence between 

scalp EEG and surface EMG signals. However, many underlying source signals (including 

electrocortical, electroocular, electromyographic, and artifact sources) collectively 

contribute via volume conduction to the electrical potentials recorded on the scalp. 

These sources can be parsed from scalp EEG using blind source separation techniques 

and equivalent current dipole modeling (Delorme et al., 2012). In this study, multi-

subject clusters of electrocortical sources were localized to the contralateral motor (2 

clusters), ipsilateral motor, anterior cingulate, posterior cingulate, and parietal cortex. 

However, only the electrocortical sources in the contralateral motor cortex exhibited 

significant corticomuscular coherence. This finding is consistent with the knowledge that 

the corticospinal pathways originate in the motor cortex. The use of independent 

components analysis to separate out motor cortex sources rather than directly using 

EEG electrode signals for calculating corticomuscular coherence is beneficial because it 

ensures that mixing of various electrocortical processes, as well as neck and facial EMG 

signals, via volume conduction doesn’t bias the analysis. Blind source separation 

techniques may be beneficial for future studies of corticomuscular coherence, 

particularly during dynamic motor tasks when scalp EEG signals can be highly 
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contaminated by electromyographic and movement artifacts (Gramann et al., 2011a; 

Gwin et al., 2010a, b).   

In conclusion, significant coherence between contralateral motor cortex 

electrocortical signals and lower limb EMG was observed in the beta- and gamma-range 

for both isometric and isotonic self-paced knee and ankle exercises. However, gamma-

range coherence was significantly greater for isotonic exercises than for isometric 

exercises. This beta-to-gamma shift was consistent across 6 of the 8 lower limb muscle 

EMG signals that we recorded. This suggests that active muscle movement may 

modulate the speed of corticospinal oscillations. Specifically, isotonic contractions shift 

corticospinal oscillations towards the gamma-range while isometric contractions favor 

beta-range oscillations.  
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Chapter 7: Discussion 

 
 

The overarching objective of this dissertation was to evaluate electrocortical 

dynamics associated with lower limb motor tasks using a novel noninvasive electrical 

neuroimaging approach.  

Chapter 2 demonstrated the feasibility of using high-density EEG and ICA to record 

cortical neural activity during human locomotion. This manuscript focused on recording 

brain dynamics associated with a cognitive task that was performed while healthy 

subjects stood, walked, and ran on a treadmill. A primary finding of Chapter 2 was that 

by using high-density EEG and ICA, cognitive event-related cortical potentials could be 

recorded during walking that were nearly identical to those during standing. This was 

the first demonstration of noninvasive electrical neuroimaging during human 

locomotion and led directly to a second, more in depth, study of cognitive event-related 

cortical potentials during walking (Gramann et al., 2011a).  

There are many interesting avenues for further study of brain dynamics associated 

with cognitive tasks performed while walking. In particular, the techniques used in 

Chapter 2 enable novel studies using dual-task (cognitive and motor) experimental 

designs to assess brain dynamics associated with performing cognitive tasks while 

walking. In a completed but unpublished study from the Human Neuromechanics 

Laboratory at the University of Michigan using the data from Chapter 2 of this 
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dissertation, Granger causality was used to determine the effective connectivity 

between electrocortical sources. This study demonstrated that effective connectivity 

involving non-sensorimotor areas was stronger during walking than during standing 

when subjects were engaged in a simultaneous cognitive task. This suggests that 

performing a cognitive task while walking promotes greater interaction among cognitive 

neural substrates than performing the same task while standing. A limitation of this 

study and of Chapter 2 is that subjects performed a relatively simple visual target 

discrimination and response task. Active studies in the Human Neuromechanics 

Laboratory are examining more complex cognitive tasks, such as the Brooks spatial 

memory task, performed while walking. Finally, the techniques used in Chapter 2 are 

not limited to treadmill walking. Researchers at the Swartz Center for Computational 

Neuroscience at the University of California, San Diego, are implementing similar 

techniques to study subjects performing object identification during over ground 

navigation (Makeig et al., 2009). Further investigations using dual-task (cognitive and 

motor) experimental designs to assess brain dynamics associated with performing 

cognitive tasks while walking are warranted. Such studies would be particularly relevant 

for older adults because the population is rapidly aging and empirical evidence suggests 

that age-related performance decrements for certain combinations of cognitive and 

motor tasks are disproportionately greater than the additive age-related costs of 

performing the two tasks independently (Seidler et al., 2010). 

A second important finding from Chapter 2 was that during running, gait-related 

artifact severely compromised the EEG signals to the point that even after applying ICA 
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stable cognitive event-related cortical potentials were not detectable. I solved this 

problem by implementing a channel-based artifact template regression procedure prior 

to ICA. After applying this procedure, stable cognitive event-related cortical potentials 

were detectable during running. This finding demonstrated that mechanical artifact 

from stereotyped movements may be minimized using a template regression procedure 

provided that movement-related kinematic signals are available for performing 

appropriate time-warping. A limitation of this approach is that only electrodynamics 

that are randomly out of phase with the movement artifact can be recovered; 

electrodynamics that are time locked to the movement artifact will be regressed from 

the data. There are many avenues for further study using this approach. Some 

researchers have expressed an interest in using this technique to study brain dynamics 

associated with evasive maneuvers such as jump-cut landings. Understanding the 

mechanisms of neuro-motor control during these evasive maneuvers is important 

because this type of movement carries a high ACL injury risk (McLean and Beaulieu, 

2010). 

Chapter 3 built on the results of Chapter 2 but focused on patterns of 

electrocortical activity that are synchronized to the gait cycle during walking. This study 

provided the first intra-stride measurements of human brain activity recorded during 

walking. Electrocortical sources in the anterior cingulate, posterior parietal, and 

sensorimotor cortex exhibited significant intra-stride changes in spectral power. During 

the end of stance, as the leading foot was contacting the ground and the trailing foot 

was pushing off, alpha- and beta-band spectral power increased in or near the left/right 
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sensorimotor and dorsal anterior cingulate cortex. These data confirmed cortical 

involvement in steady-speed human locomotion. 

The existence of significant intra-stride patterns of activation and deactivation 

suggests that the human cortex is actively engaged during steady-speed locomotion. 

Given that corticospinal excitability is modulated during the human gait cycle (Capaday 

et al., 1999; Petersen et al., 2001; Schubert et al., 1997) it is likely that direct 

corticospinal pathways contribute to locomotor execution. However, tonic descending 

inputs to spinal networks from the mesencephalic locomotor region of the brainstem 

can also generate rhythmic muscle activation (Rossignol et al., 2006). A limitation of 

Chapter 3 of this dissertation is that it does not indicate whether human cortex is 

actively involved in controlling locomotion via direct pathways or whether human cortex 

processes sensory afferents that are used to modulate a descending signal to spinal 

generators via the mesencephalic locomotor region. Studying walking under challenging 

conditions, with either increased or decreased sensory demands or availability, may 

provide a means of further assessing the relative contribution of direct and indirect 

pathways to locomotor execution. Studies in the Human Neuromechanics Laboratory 

have already begun to address these questions. Using the technique of Chapter 3 these 

studies are examining the brain dynamics associated with walking on a narrow balance-

beam and on uneven ground.  

Interest in the use of EEG during walking extends well beyond the Human 

Neuromechanics Laboratory. Several research groups have already published studies 

utilizing EEG during walking based on the results presented in Chapter 3 of this 
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dissertation. Researchers from the University of Copenhagen demonstrated a causal 

relationship between contralateral sensorimotor cortex electrocortical source signals 

and tibialis anterior electromyography (Hvass Petersen et al., 2012). Researchers from 

the University of Maryland decoded lower limb kinematics from low frequency (theta-

range) EEG signals during walking (Presacco et al., 2011). In a recent review article, a 

research group from Belgium confirmed the results from Chapter 3 of this dissertation 

and demonstrated that electrocortical spectral fluctuations combined with a dynamic 

recurrent neural network could be used to predict lower limb kinematics during 

treadmill walking. These are the first of what will likely be many studies inspired by the 

demonstration that it is possible to record intra-stride electrocortical dynamics using 

EEG.  

Chapters 2 and 3 were groundbreaking studies because they demonstrated that 

EEG and ICA can be used to image the brain during locomotion. They have already been 

the subject of an invited review (Gramann et al., 2011b). These studies used high-

density 256-channel EEG sensor arrays, which are likely too time-consuming to setup in 

a clinical or field setting (and too expensive for many research laboratories). Therefore, 

the goal of Chapter 4 was to evaluate how reducing the number of EEG channel signals 

affects the electrocortical source signals that can be parsed from EEG recorded during 

ambulatory activities. I demonstrated that an EEG montage with as few as 35 channels 

may be sufficient to record the more dominate electrocortical sources. This finding is 

task specific but should provide a guideline (and encouragement) for researchers 
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interested in implementing EEG and ICA in mobile environments without using costly 

high-density electrode arrays.  

In the last two chapters, the same imaging techniques were used to study healthy 

subjects performing seated isometric and isotonic, knee and ankle exercises. I studied 

these simple tasks to better understand the relationship between electrocortical 

dynamics and lower limb muscle activity. Locomotion is a complex task requiring 

coordinated action of many muscles. Therefore, it was difficult to gain insight into 

aspects of lower limb neuro-motor control from the studies of human locomotion. 

Chapters 5 and 6 provided more direct insight. Specifically, I found that isometric and 

isotonic contractions elicit different patterns of sensorimotor electrocortical activity.  

Isometric contractions elicited an event related desynchronization (ERD) in the α-band 

(8-12 Hz) and β-band (12-30 Hz) at joint torque onset and offset, while isotonic 

contractions elicited a sustained α- and β-band ERD throughout the trial. Furthermore, I 

examined the causal relationship between contralateral sensorimotor electrocortical 

signals and lower-limb EMG. I found significant coherence in the beta- and gamma-

range for all exercise types. Gamma-range coherence was significantly greater for 

isotonic exercises than for isometric exercises.  

The results of these studies demonstrated that ICA of high-density EEG can be used 

to monitor a broad distribution of electrocortical sources that contribute to lower limb 

muscle actions. It remains to be seen how these task specific electrocortical dynamics 

(or those associated with locomotion presented in Chapter 3) are affected by 

neurological injuries, such as stroke or spinal cord injury, or how they change in 



 112 

response to motor rehabilitation. Alternative imaging techniques suggest that functional 

recovery will rely on plasticity in multiple cortical regions and that the relative 

contribution of different regions will change throughout the course of rehabilitation 

(Eliassen et al., 2008; Enzinger et al., 2009; Kokotilo et al., 2009a; Kokotilo et al., 2009b; 

Miyai et al., 2006; Nishimura and Isa, In Press). The techniques used in this study may 

provide a means to better understand the cortical physiology underlying neurological 

rehabilitation and recovery.   

Another important result of Chapter 5 was that task specific changes in 

electrocortical spectral power were consistent enough to decode the type of muscle 

action from the recorded EEG on a trial-by-trial basis. Perhaps more interestingly, the 

inclusion of a broad distribution of electrocortical signals improved the classification 

accuracy. Classifiers based on contralateral sensorimotor cortex sources achieved a 4-

way classification accuracy (isometric versus isotonic and high versus low effort) of 69% 

while classifiers based on electrocortical sources in multiple brain regions achieved a 4-

way classification accuracy of 87%. This finding is consistent with the emerging 

consensus that a broad distribution of electrocortical signals and a better understanding 

of underlying cortical physiology will improve brain computer interface information 

transfer rates (Leuthardt et al., 2009). In addition, incorporating spatial, spectral, and 

temporal features of electrocortical signals, across multiple cortical areas, can improve 

the fidelity of classification algorithms (Besserve et al., 2011; Muller-Gerking et al., 1999; 

Qin et al., 2004; Ramoser et al., 2000; Wentrup et al., 2005; Zhang et al., 2007). To make 

use of ICA in realtime it will be necessary to formulate a mechanism for periodically 
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updating the subject specific IC weight matrix (the matrix that transforms EEG channel 

signals into independent electrocortical processes). This is feasible but has not yet been 

attempted, to my knowledge. 

In addition to the previously mentioned limitations related to individual chapters, 

there are several limitations that apply to this dissertation in its entirety. First, my 

subject population was predominantly male. This is because long haired research 

participants are problematic for studies using EEG. Future work should evaluate 

potential gender difference in the electrocortical dynamics presented throughout this 

dissertation because there are gender differences in cortical recruitment during both 

simple and complex motor tasks (Lissek et al., 2007). Second, the electrocortical source 

localization algorithms used throughout this dissertation were based on a standardized 

boundary element head model. The use of subject specific head models could greatly 

improve the localization accuracy. In future studies the use of the Neuroelectromagnetic 

Forward Head Modeling Toolbox (Acar and Makeig, In Press) and subject specific 

magnetic resonance based head models should be considered. Third, it is important to 

note that the terms mobile and noninvasive, which are used throughout this dissertation 

to describe the imaging techniques, are open to interpretation. Mobile refers to an 

imaging technique that allows subject to move relatively freely within a laboratory 

space. Future work should examine the use of wireless arrays of high-density active 

electrodes that are currently available (Biosemi, Amsterdam, The Netherlands). 

Noninvasive, in the context of recording electrocortical signals, refers to the use of EEG 

sensors that are placed on the scalp as opposed to more invasive techniques that use 
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sensors mounted directly on top of, or into, the cortex. Future work should examine 

ways to reduce the burden of donning and doffing the electrode caps including the use 

of cap mounted arrays of dry wireless electrodes (Chi et al., 2010). 

In summary, this dissertation has expanded our understanding of cortical 

involvement in voluntary lower limb movement (including locomotion) and will 

contribute to the development of novel technologies for clinical neuro-monitoring, 

neuro-assessment, and neuro-rehabilitation. The findings from this dissertation may 

inform future uses of noninvasive electrical neuroimaging in clinical settings. To get the 

most clinical benefit from functional neuroimaging during neurological rehabilitation it 

is necessary to establish relationships between electrocortical dynamics and muscle 

activity in neurologically intact humans during a variety of lower limb motor tasks 

including individual muscle contractions, coordinated stepping, and locomotion. The 

techniques that I implemented can be used throughout the rehabilitation process to 

study both discrete lower limb muscle activations and more dynamic tasks, such as 

coordinated non-weight-bearing stepping or normal locomotion. Therefore, the results 

of this dissertation have implications for neurorehabilitation of gait, including 

monitoring cortical plasticity and providing real-time control of robotic lower limb 

exoskeletons. 
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